Sistema de distribución del aire. Cálculo de conductos.

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Sistema de distribución del aire. Cálculo de conductos."

Transcripción

1 Sistema de distribución del aire. Cálculo de conductos. Objetivos: Que el alumno sea capaz de dimensionar una red de conductos. Se pretende que el alumno pueda identificar los diferentes elementos que constituyen una red de conductos de aire y dimensionar los principales elementos, ventilador y conductos. Para ello, se explicarán diferentes métodos de diseño, sus ventajas e inconvenientes. Contenido: 1. Redes de conductos. Elementos. Clasificación. Conceptos básicos de diseño de conductos 3. Métodos de diseño 4. Ventiladores. Selección del ventilador Bibliografía: Manual de Aire Acondicionado. Carrier, Capítulo y 6.. Thermal Environmental Engineering. Thomas H. Kuehn, James W. Ramsey, James L. Threlkeld. Ed. Prentice Hall, Capítulo 18. ASHRAE Handbook. Fundamentals. SI Edition. ASHRAE, Capítulo 3. Cálculo de conductos de aire. A. Fontanals. Ed. CEAC, Ventilación Industrial. E. Carnicer. Ed. Paraninfo, Capítulos 3 y 4. Cálculos en climatización. Ejercicios Resueltas. E. Torrella, R. Cabello, J. Navarro. Ed. AMV, Redes de conductos. Elementos. Clasificación La misión de un sistema de conductos es transportar el aire desde la unidad de tratamiento de aire (UTA) hasta el recinto a climatizar y suele comprender los conductos de impulsión y los de retorno. Dentro de los elementos que constituyen el sistema podemos distinguir los conductos y los elementos terminales. Estos sistemas se clasifican en función de la velocidad y de la presión en los conductos. En función de la velocidad del aire tenemos: - conductos de baja velocidad (<1 m/s, entre 6 y 1 m/s) - y conductos de alta velocidad (>1 m/s) En función de la presión del aire en el conducto, se clasifican en baja, media y alta presión. Esta clasificación corresponde a la misma que utilizan los ventiladores: - Baja presión (clase I): Hasta 90 mm.c.a. - Media presión (clase II): Entre 90 y 180 mm.c.a. - Alta presión (clase III): Entre 180 y 300 mm.c.a.. Conceptos básicos La red de conductos se diseña para conseguir llevar un determinado caudal de aire a los puntos de impulsión deseados. Antes de entrar en el diseño de la red de conductos, vamos a introducir las propiedades físicas del aire, el concepto de diámetro equivalente y el cálculo de pérdidas de carga.

2 .1. Propiedades físicas del aire Obviamente las propiedades físicas del aire van a depender de la temperatura y de la presión. En el diseño de conductos, las propiedades más utilizadas son la densidad y la viscosidad. La densidad se puede aproximar como: P ρ = 87 atm T siendo: P atm la presión atmosférica (Pa) T la temperatura del aire (K) ρ la densidad del aire (kg/m 3 ) aunque, puede tomarse como aproximación una densidad del aire constante de 1, kg/m 3. En cuanto a la viscosidad del aire, se puede obtener mediante la expresión: µ = 0,76 5 T 1, ,16 con µ (N s/m ) y T (K). El efecto de la presión en la determinación de las propiedades del aire sólo tiene efecto cuando la instalación se ubica a mucha altura sobre el nivel del mar... Diámetro equivalente Los conductos utilizados en la distribución del aire pueden ser circulares o rectangulares. Debido a que la mayoría de las tablas y expresiones se dan para conductos circulares, resulta muy útil el concepto de diámetro equivalente. Para determinar el diámetro equivalente de un conducto rectangular puede utilizarse la expresión: 0,65 ( H W ) D eq = 1,3, 0,5 ( H + W ) donde D eq es el diámetro equivalente, H la altura del conducto y W la anchura. De todas formas, resulta de gran utilidad la tabla I (diámetros equivalentes de conductos)..3. Pérdidas de carga Dentro del conducto el fluido experimenta una pérdida de presión por rozamiento, denominándose ésta pérdida de carga. Estas pérdidas de carga se dividen en pérdidas en el conducto y pérdidas en singularidades Pérdidas en conducto Se produce una pérdida de carga por el paso del aire en el conducto, la cual suele expresarse por metro de longitud como:

3 P ( Pa / m) = L f ρ ( kg / m D eq 3 ( m) ) c ( m / s) siendo f el factor de fricción (adimensional) del material. Para conductos de chapa galvanizada, esta expresión viene representado en el diagrama de la figura Pérdidas en singularidades Habitualmente estas pérdidas se miden de forma experimental y se determinan por expresiones del tipo: c P = K ρ, siendo K el factor de forma de la singularidad. De cualquier forma en el anexo 1 se encuentran las expresiones y las tablas para las singularidades más comunes en las redes de conductos (codos, derivaciones, transformaciones, etc.)..4. Recuperación de presión estática En una instalación de redes de conductos de aire, si avanzamos en el sentido del flujo, el caudal disminuye en cada derivación. Un menor caudal exige una menor sección, por lo que los conductos van estrechándose cada vez que aparece una derivación. Esta disminución de caudal puede provocar en el tramo siguiente (principal) un cambio de velocidad. Estableciéndose la siguiente relación entre la sección 1 y de la figura. P 1 c1 c ρ = P + ρ +. Al mismo tiempo, se debe cumplir que V 0 = V 1 + V 3, de modo que si la sección tiene las mismas dimensiones que la sección 0, la velocidad en debe ser menor que en 0. Si tenemos en cuenta que la velocidad en la sección 1 es la misma que en 0, tendremos entre las secciones 1 y la siguiente variación de presión: c 1 c P = ρ de donde se desprende que al ser P >P 1, se ha producido un aumento de la presión estático a cambio de una disminución de la presión dinámica. Debido a que sólo es posible recuperar un porcentaje de presión, entre el 50 y el 95%. A efectos de cálculo supondremos una recuperación del 75% y así se tiene que la recuperación estática en conductos tras una derivación se puede aproximar como: c 0,75 1 c P RE = ρ Así pues, las pérdidas totales se obtienen según la expresión:

4 P = P + P P. TOTAL COND SING RE 3. Métodos de diseño Existen varios métodos que nos permiten diseñar las redes de conductos de aire. Entre ellos, encontramos: - Método de reducción de velocidad - Método de pérdida de carga constante - Método de recuperación estática - Método T Los más empleados suelen ser el método de pérdida de carga constante (para conductos de impulsión baja velocidad, retorno y ventilación) y el método de recuperación estática ( principalmente en conductos de impulsión de baja y alta velocidad). El método de reducción de velocidad no se suele utilizar porque para resolver el problema con una precisión razonable se necesita mucha experiencia y conocer perfectamente el cálculo de conductos. El método T permite una optimización del diseño que no permiten los otros métodos. Sin embargo, no es tan común como los anteriores Método de pérdida de carga constante Este método se utiliza en conductos de impulsión, retorno y extracción de aire. Consiste en calcular los conductos de forma que tengan la misma pérdida de carga por unidad de longitud a lo largo de todo el sistema. APLICACIÓN FACTOR DE CONTROL DE RUIDO (conductos principales) Conductos principales Conductos derivados Suministro Retorno Suministro Retorno Residencias Apartamentos Dormitorios hotel 5 7,5 6,5 6 5 Dormitorios hospital Oficinas particulares ,5 8 6 Despachos dirección Bibliotecas Salas cine/teatro 4 6,5 5,5 5 4 Auditorios Oficinas públicas Restaurantes 7,5 10 7,5 8 6 Comercios Bancos Comercios ,5 8 6 Cafeterías Locales industriales 1, ,5 Tabla I. Velocidad aconsejables en conductos de aire por nivel de ruido.

5 El procedimiento más usual consiste en elegir una velocidad inicial, en función de la restricción por nivel de ruido, tabla X, en el conducto principal que sigue a la impulsión desde la UTA. Una vez elegida esta velocidad, y partiendo del caudal de aire total a suministrar, se determina la pérdida de carga unitaria que debe mantenerse constante en todos los conductos. Para dimensionar los conductos del tramo principal, se determina la pérdida de presión en las distintas singularidades y las recuperaciones estáticas en las derivaciones. Finalmente con la ayuda del gráfico se determinan las secciones de cada tramo y los presiones disponibles en cada derivación a los tramos secundarios. Una vez dimensionados los tramos principales, se determinarán los conductos secundarios, los que conducen el aire hasta las bocas de impulsión. Estos tramos se pueden calcular igual que los principales o bien imponer que el aire tenga presión relativa nula después de traspasar el elemento terminal (difusor). En el primer caso, se actuaría como se ha explicado para los tramos principales. En el segundo caso se debe seguir un esquema iterativo de cálculo hasta conseguir la imposición de presión relativa nula a la salida. 3.. Método de recuperación estática Este método consiste en dimensionar el conducto de forma que el aumento de presión estática en cada rama o boca de impulsión compense las pérdidas por rozamiento en la siguiente sección del conducto. De esta forma, la presión estática en cada boca y al comienzo de cada rama será la misma. El procedimiento consiste en seleccionar una velocidad inicial para la descarga del ventilador y dimensionar la primera sección como en el método anterior. Posteriormente, las demás secciones se dimensionan con las gráficas de relación L/Q y recuperación estática a baja velocidad (ver anexo). 4. Selección del ventilador Para que el aire pueda circular por el interior de un conducto es preciso que en la instalación haya un ventilador instalado. Éste debe ser capaz de proporcionar el caudal necesario y vencer las pérdidas de presión asociadas. Para la determinación de los requerimientos del ventilador es necesario conocer con exactitud los caudales y las pérdidas de carga en la instalación. Así, se toma la mayor pérdida de carga desde la salida de la UTA hasta el punto de impulsión crítico, siendo este valor el incremento de presión que debe proporcionar el ventilador. Además, deberá ser capaz de trasegar el caudal total de diseño.

6 VELOCIDAD (m/s) Diámetro (mm) Caudal de aire (l/s) Pérdida de carga (Pa/m) Diagrama Pérdidas por rozamiento del aire en conductos circulares.

7 Gráfico Pérdidas por accesorios redondos Codos, T y cruces

8 APLICACIÓN FACTOR DE CONTROL DE RUIDO (conductos principales) Conductos principales Conductos derivados Suministro Retorno Suministro Retorno Residencias Apartamentos Dormitorios hotel 5 7,5 6,5 6 5 Dormitorios hospital Oficinas particulares ,5 8 6 Despachos dirección Bibliotecas Salas cine/teatro 4 6,5 5,5 5 4 Auditorios Oficinas públicas Restaurantes 7,5 10 7,5 8 6 Comercios Bancos Comercios ,5 8 6 Cafeterías Locales industriales 1, ,5 Tabla Velocidades máximas recomendadas para sistemas de baja velocidad (m/s). Velocidad (m/s) Presión dinámica Velocidad (mm.c.a.) (m/s),0 0,5 9,0 5,06,5 0,39 9,5 5,64 3,0 0,56 10,0 6,5 3,5 0,77 10,5 6,89 4,0 1,00 11,0 7,56 4,5 1,7 11,5 8,7 5,0 1,56 1,0 9,00 5,5 1,89 1,5 9,77 6,0,5 13,0 10,56 6,5,64 13,5 11,39 7,0 3,06 14,0 1,5 7,5 3,5 14,5 13,14 8,0 4,00 15,0 14,06 8,5 4,5 15,5 15,0 Tabla Presiones dinámicas Presión dinámica (mm.c.a.) H v 4 = V

9 Gráfico Relación L/Q Gráfico Recuperación estática en baja velocidad

10 TABLAS DE COEFICIENTES DE PÉRDIDA EN ACCESORIOS (CONDUCTOS DE AIRE) r/w 0,5 H/W 0,5 0,75 1 1, ,5 1,5 1,40 1,30 1,0 1,10 1,10 0,98 0,9 0,89 0,85 0,83 0,75 0,57 0,5 0,48 0,44 0,40 0,39 0,39 0,40 0,4 0,43 0,44 1 0,7 0,5 0,3 0,1 0,19 0,18 0,18 0,19 0,0 0,7 0,1 1,5 0, 0,0 0,19 0,17 0,15 0,14 0,14 0,15 0,16 0,17 0,17 0,0 0,18 0,16 0,15 0,14 0,13 0,13 0,14 0,14 0,15 0,15 θ = 90º Codo rectangular (radio suave) θ A 1 /A 10º 15º-40º 50º-60º 90º 10º 150º 180º v p P = C ρ (v p = velocidad en la sección A) Contracciones R/W = 10 (90º) A /A A /A Q b /Q c b s b c 0,1 0, 0,3 0,4 0,5 0,6 0,7 0,8 0,5 0,5 0,55 0,50 0,60 0,85 1, 1,8 3,1 4,4 0,35 0,5 0,35 0,35 0,50 0,80 1,3,0,8 3,8 0,50 0,50 0,6 0,48 0,40 0,40 0,48 0,60 0,78 1,1 0,67 0,50 0,5 0,40 0,3 0,30 0,34 0,44 0,6 0,9 1,0 0,50 0,44 0,38 0,38 0,41 0,5 0,68 0,9 1, 1,0 1,0 0,67 0,55 0,46 0,37 0,3 0,9 0,9 0,30 1,33 1,0 0,70 0,60 0,51 0,4 0,34 0,8 0,6 0,6,0 1,0 0,60 0,5 0,43 0,33 0,4 0,17 0,15 0,17 v p P = C ρ C en derivación

11 R/W = 10 (90º) A b /A s A b /A c Q b /Q c 0,1 0, 0,3 0,4 0,5 0,6 0,7 0,8 0,5 0,5-0,01-0,03-0,01 0,05 0,13 0,1 0,9 0,38 0,35 0,5 0,08 0-0,0-0,01 0,0 0,08 0,16 0,4 0,50 0,50-0,03-0,06-0,05 0 0,06 0,1 0,19 0,7 0,67 0,50 0,04-0,0-0,04-0,03-0,01 0,04 0,1 0,3 1,0 0,50 0,7 0,48 0,8 0,13 0,05 0,04 0,09 0,18 1,0 1,0-0,0-0,04-0,04-0,01 0,06 0,13 0, 0,30 1,33 1,0 0,10 0 0,01-0,03-0,01 0,03 0,10 0,0,0 1,0 0,6 0,38 0,3 0,13 0,08 0,05 0,06 0,10 v p P = C ρ C en conducto principal R/D 0,50 0,75 1,00 1,50,00,50 C o 0,71 0,33 0, 0,15 0,13 0,1 θ K 0 0,31 0,45 0,60 0,70 0,85 1,0 1,13 1,0 1,8 1,40 C = C o K v p P = C ρ C en codo suave circular Piezas R/D 0,50 0,75 1,00 1,50,00 5-0,46 0,33 0,4 0,19 4-0,50 0,37 0,7 0,4 3 0,98 0,54 0,4 0,34 0,33 v p P = C ρ C en codo varias piezas

12 θ H/W 0,5 0,75 1,0,0 3,0 4,0 0 0,08 0,08 0,07 0,07 0,06 0, ,17 0,17 0,16 0,15 0,13 0, ,37 0,36 0,34 0,31 0,8 0,7 60 0,59 0,57 0,55 0,5 0,46 0, ,87 0,84 0,81 0,77 0,67 0, ,30 1,0 1,0 1,10 0,98 0,9 C en codo rectangular v p P = C ρ A 1 /A ,5 0,9 0,31 0,3 0,33 0,30 4 0,50 0,56 0,61 0,63 0,63 0,63 6 0,58 0,68 0,7 0,76 0,76 0, ,59 0,70 0,80 0,87 0,85 0,86 θ v p P = C ρ C en transición rectangular V b /V c Q b /Q c 0,1 0, 0,3 0,4 0,5 0,6 0,7 0,8 0, 0,91 0,4 0,81 0,79 0,6 0,77 0,7 0,70 0,8 0,78 0,73 0,69 0,66 1,0 0,78 0,98 0,85 0,79 0,74 1, 0,90 1,11 1,16 1,3 1,03 0,86 1,4 1,19 1, 1,6 1,9 1,54 1,5 0,9 1,6 1,35 1,4 1,55 1,59 1,63 1,50 1,31 1,09 C en T (45º) v p P = C ρ

13 CONDUCTO (mm.) S φ S φ S φ S φ S φ

14 CONDUCTO (mm.) S φ S φ S φ S φ S φ

15 CONDUCTO (mm.) S φ S φ S φ S φ S φ

16 CONDUCTO (mm.) S φ S φ S φ S φ S φ

17 CONDUCTO (mm.) S φ S φ S φ S φ S φ

18 CONDUCTO (mm.) S φ S φ S φ S φ S φ

19 CONDUCTO (mm.) S φ S φ S φ S φ S φ Tabla Dimensiones de conductos, área, diámetro equivalente (mm.)

20 Orden de magnitud Para una red de conductos donde las bocas impulsan sobre 500 m 3 /h se debe tener en torno a 3m/s de velocidad en la última sección y una presión en las bocas de impulsión ~ 3.8 mm.c.a. = 0.4 Pa. Ventiladores Los ventiladores empleados en el campo del aire acondicionado son: radiales (o centrífugos), los axiales y en algunos casos los diametrales. Fig. Ventilador centrífugo. Fig. Ventilador axial En los ventiladores radiales o centrífugos el movimiento del aire se realiza radialmente con respecto al eje de rotación, mientras que en los ventiladores axiales (o helicoidales) el movimiento se realiza paralelamente al eje del rodete. Estos últimos son aplicados especialmente en los casos en los que necesitamos caudales de aire elevados con pequeñas presiones. P eléctrica = η Q P Donde el rendimiento total del ventilador oscila entre 0.3 y 0.5 en ventiladores centrífugos pequeños, 0.5 y 0.7 en los de tamaño medio y entre 0.7 y 0.9 en los de grandes dimensiones. Selección del ventilador El punto de funcionamiento será la intersección de la característica del circuito ( P=kQ ) y la característica del ventilador (dado por el fabricante). Se puede variar el punto de funcionamiento bien variando la característica del circuito (compuertas, etc.) o bien variando el régimen de giro del ventilador. Los criterios para seleccionar un ventilador son las dimensiones, el ruido, la facilidad de mantenimiento y coste inicial. El ruido y el rendimiento están ligados entre sí, en el sentido de que el mínimo nivel sonoro se corresponde con el rendimiento máximo. P (mm.c.a.) Velocidad (m/s) Centrífugo Velocidad (m/s) Axial

21 Zona óptima de utilización de los ventiladores. Es aconsejable seleccionar el ventilador dentro de la zona indicada en las aplicaciones en el que el ruido presente un inconveniente, como son las instalaciones de climatización.

22 1 mm.c.a. = 9,80665 Pa L(m)/Q(m 3 /h) 0,61

MSFC203_INSTALACIONES DE CLIMATIZACIÓN Y VENTILACIÓN

MSFC203_INSTALACIONES DE CLIMATIZACIÓN Y VENTILACIÓN MSFC203_INSTALACIONES DE CLIMATIZACIÓN Y VENTILACIÓN ÍNDICE Parámetros fundamentales y operaciones básicas en aire acondicionado Condiciones de bienestar o confort Cálculo de la carga térmica de refrigeración

Más detalles

PÉRDIDA DE CARGA Y EFICIENCIA ENERGÉTICA.

PÉRDIDA DE CARGA Y EFICIENCIA ENERGÉTICA. PÉRDIDA DE CARGA Y EFICIENCIA ENERGÉTICA. Con unos costos de la energía en aumento y con unas limitaciones cada vez mayores a la emisión de gases de efecto invernadero, el diseño de equipos e instalaciones

Más detalles

2. ACTIVIDAD ACADÉMICA CÁLCULO EXPERIMENTAL DE PÉRDIDAS DE CARGA EN

2. ACTIVIDAD ACADÉMICA CÁLCULO EXPERIMENTAL DE PÉRDIDAS DE CARGA EN . ACTIVIDAD ACADÉMICA CÁLCULO EXPERIMENTAL DE PÉRDIDAS DE CARGA EN CONDUCCIONES A PRESIÓN.1. Introducción.. Descripción de la instalación fluidomecánica.3. Descripción de la actividad práctica.4. Conceptos

Más detalles

MANUAL TÉCNICO SOLUCIÓN MULTITUBO EN INSTALACIONES DE CALEFACCIÓN

MANUAL TÉCNICO SOLUCIÓN MULTITUBO EN INSTALACIONES DE CALEFACCIÓN MANUAL TÉCNICO SOLUCIÓN MULTITUBO EN INSTALACIONES DE CALEFACCIÓN INDICE 1.- INTRODUCCIÓN.... 3 2.- CÁLCULO DE INSTALACIONES.... 4 3.- TIPOS DE INSTALACIONES DE CALEFACCIÓN... 4 3.1.- INSTALAClÓN BITUBO....

Más detalles

ACONDICIONAMIENTO HIGROTÉRMICO DE EDIFICIOS DISTRIBUCIÓN DE AIRE ACONDICIONADO

ACONDICIONAMIENTO HIGROTÉRMICO DE EDIFICIOS DISTRIBUCIÓN DE AIRE ACONDICIONADO ACONDICIONAMIENTO HIGROTÉRMICO DE EDIFICIOS DISTRIBUCIÓN DE AIRE ACONDICIONADO Principios a considerar en un proyecto de distribución de aire Dimensionamiento de la red de conductos Dimensionamiento de

Más detalles

DISEÑO DE DUCTOS PARA UN CENTRO COMERCIAL. Trabajo presentado al INGENIERO Antonio Bula en la asignatura de Refrigeración y Aire Acondicionado

DISEÑO DE DUCTOS PARA UN CENTRO COMERCIAL. Trabajo presentado al INGENIERO Antonio Bula en la asignatura de Refrigeración y Aire Acondicionado DISEÑO DE DUCTOS PARA UN CENTRO COMERCIAL Trabajo presentado al INGENIERO Antonio Bula en la asignatura de Refrigeración y Aire Acondicionado UNIVERSIDAD DEL NORTE DEPARTAMENTO DE ING. MECÁNICA BARRANQUILLA

Más detalles

1. ACTIVIDAD ACADÉMICA MEDIDA DE CAUDALES Y DE PRESIONES

1. ACTIVIDAD ACADÉMICA MEDIDA DE CAUDALES Y DE PRESIONES 1. ACTIVIDAD ACADÉMICA MEDIDA DE CAUDALES Y DE PRESIONES 1.1. Introducción 1.2. Descripción de la instalación fluidomecánica 1.3. Descripción de la actividad práctica propuesta Profesor: Inmaculada Pulido

Más detalles

TUBERIAS. Ricardo García San José Ingeniero Industrial (Noviembre 2.000) TUBERIAS

TUBERIAS. Ricardo García San José Ingeniero Industrial (Noviembre 2.000) TUBERIAS TUBERIAS Ricardo García San José Ingeniero Industrial (Noviembre 2.000) TUBERIAS INDICE 1.- MATERIALES... 3 2.- PERDIDAS DE CARGA... 4 2.1.- FACTORES QUE INFLUYEN EN LAS PERDIDAS DE CARGA... 4 2.2.- REGIMENES

Más detalles

PÉRDIDAS DE CARGAS POR FRICCIÓN

PÉRDIDAS DE CARGAS POR FRICCIÓN PÉRDIDAS DE CARGAS POR FRICCIÓN Objetivos Estudio de pérdidas de energía por fricción, tanto en tramos rectos de tuberías (pérdidas de carga lineales), como en diferentes s característicos de las instalaciones

Más detalles

CURSO TALLER PROMOTORES DE AHORRO Y EFICIENCIA DE ENERGÍA ELÉCTRICA

CURSO TALLER PROMOTORES DE AHORRO Y EFICIENCIA DE ENERGÍA ELÉCTRICA PROGRAMA INTEGRAL DE ASISTENCIA TÉCNICA Y CAPACITACIÓN PARA LA FORMACIÓN DE ESPECIALISTAS EN AHORRO Y USO EFICIENTE DE ENERGÍA ELÉCTRICA DE GUATEMALA CURSO TALLER PROMOTORES DE AHORRO Y EFICIENCIA DE ENERGÍA

Más detalles

Difusores de suelo DSA, DSA-PR, DSA-HV y DF-CP-MT

Difusores de suelo DSA, DSA-PR, DSA-HV y DF-CP-MT serie SUELO PELDAÑO Serie Suelo 3 Difusores de suelo DSA, DSA-PR, DSA-HV y DF-CP-MT ÍNDICE Difusores DSA / DSA-PR / DSA-HV 4 Modelos y dimensiones 5 DSA Tablas de selección 6 DSA Gráficos de selección

Más detalles

Mecánica de Fluidos y Máquinas Hidráulicas

Mecánica de Fluidos y Máquinas Hidráulicas Mecánica de Fluidos y Máquinas Hidráulicas Tema 06. Flujo de Fluidos en Tuberías Severiano F. Pérez Remesal Carlos Renedo Estébanez DPTO. DE INGENIERÍA ELÉCTRICA Y ENERGÉTICA Este tema se publica bajo

Más detalles

Turbinas de vapor. Introducción

Turbinas de vapor. Introducción Turbinas de vapor Introducción La turbina de vapor es una máquina de fluido en la que la energía de éste pasa al eje de la máquina saliendo el fluido de ésta con menor cantidad de energía. La energía mecánica

Más detalles

DL CH12 Reactor químico combinado

DL CH12 Reactor químico combinado DL CH12 Reactor químico combinado Introducción La reacción química es la operación unitaria que tiene por objeto distribuir de una forma distinta los átomos de unas moléculas (compuestos reaccionantes

Más detalles

Mecánica de Energía. Pérdidas de Energía Total

Mecánica de Energía. Pérdidas de Energía Total Mecánica de Energía Pérdidas de Energía Total Fluidos compresibles e incompresibles Los fluidos incompresibles son aquellos en los que el volumen permanece constante independientemente de las fuerzas aplicadas,

Más detalles

Auditorías Energéticas

Auditorías Energéticas Auditorías Energéticas IMPORTANTES RESULTADOS SE OBTIENEN CON LA REALIZACION DE AUDITORIAS ENERGETICAS APLICADAS A LOS SISTEMAS DE GENERACION, DISTRIBUCION Y CONSUMO DE VAPOR. LA REDUCCION DE COSTOS ES

Más detalles

Air Handling & Climate S. L. Difusión de aire

Air Handling & Climate S. L. Difusión de aire Air Handling & Climate S. L. Difusión de aire Concepto de difusión de aire El sistema de difusión es la parte terminal y visible de un sistema de climatización, y determina el éxito o el fracaso de la

Más detalles

5. ACTIVIDAD ACADÉMICA SELECCIÓN DE GRUPOS DE BOMBEO EN SISTEMAS DE

5. ACTIVIDAD ACADÉMICA SELECCIÓN DE GRUPOS DE BOMBEO EN SISTEMAS DE 5. ACTIVIDAD ACADÉMICA SELECCIÓN DE GRUPOS DE BOMBEO EN SISTEMAS DE DISTRIBUCIÓN DE FLUIDOS 5.. Enunciado problema 5.. Alternativa de solución con 5 grupos de bombeo iguales en paralelo 5.. Experiencia

Más detalles

Tema 3. Medidas de tendencia central. 3.1. Introducción. Contenido

Tema 3. Medidas de tendencia central. 3.1. Introducción. Contenido Tema 3 Medidas de tendencia central Contenido 31 Introducción 1 32 Media aritmética 2 33 Media ponderada 3 34 Media geométrica 4 35 Mediana 5 351 Cálculo de la mediana para datos agrupados 5 36 Moda 6

Más detalles

DEFINICIÓN DE CONCEPTOS PARA AIRE ACONDICIONADO

DEFINICIÓN DE CONCEPTOS PARA AIRE ACONDICIONADO DEFINICIÓN DE CONCEPTOS PARA AIRE ACONDICIONADO Glosario. (Del lat. glossarĭum). 1. m. Catálogo de palabras oscuras o desusadas, con definición o explicación de cada una de ellas. 2. m. Catálogo de palabras

Más detalles

Instalaciones y Equipos Térmicos 5 o Ingeniería Industrial. Carmen López Muñoz Alberto Garre Pérez. Climatización de un local comercial

Instalaciones y Equipos Térmicos 5 o Ingeniería Industrial. Carmen López Muñoz Alberto Garre Pérez. Climatización de un local comercial Instalaciones y Equipos Térmicos 5 o Ingeniería Industrial Carmen López Muñoz Alberto Garre Pérez Climatización de un local comercial 31 de Enero de 2011 Índice 1. Denición de la práctica 2 2. Cálculo

Más detalles

Multitoberas. Difusores Multitoberas DF49MT3

Multitoberas. Difusores Multitoberas DF49MT3 serie MULTITOBERAS Multitoberas 3 Difusores Multitoberas DF49MT3 INDICE Pág Difusor Multitoberas DF49MT3 4 Tipología y dimensiones 5 Simbología 9 Datos técnicos Ejemplo de selección 1 Codificación 19 4

Más detalles

Pedro Giner Editorial, S.L. NORMA UNE 100.040-96

Pedro Giner Editorial, S.L. NORMA UNE 100.040-96 NORMA UNE 100.040-96 Protección de las vías de evacuación mediante presurización. A. INTRODUCCIÓN: 1. OBJETO: a. Protección de las vías de evacuación de los edificios mediante sistemas de presurización.

Más detalles

E-CONTABILIDAD FINANCIERA: NIVEL II

E-CONTABILIDAD FINANCIERA: NIVEL II E-CONTABILIDAD FINANCIERA: NIVEL II MÓDULO 8: INTRODUCCION AL ANALISIS DE BALANCES OBJETIVOS DEL MÓDULO: Iniciar el estudio de análisis contable. Comprender el significado y necesidad del fondo de maniobra.

Más detalles

EFICIENCIA EN LOS SISTEMAS DE BOMBEO Y DE AIRE COMPRIMIDO

EFICIENCIA EN LOS SISTEMAS DE BOMBEO Y DE AIRE COMPRIMIDO EFICIENCIA EN LOS SISTEMAS DE BOMBEO Y DE AIRE COMPRIMIDO 1. GENERALIDADES La sencillez en la operación, la disponibilidad, la facilidad y la seguridad en el manejo de las herramientas y elementos neumáticos

Más detalles

PRESENTACION 5% EXÁMEN RÁPIDO 10% FORMATO 10% Caída de Presión en Tuberías CALCULOS 20% RESULTADOS 20% NOMBRE

PRESENTACION 5% EXÁMEN RÁPIDO 10% FORMATO 10% Caída de Presión en Tuberías CALCULOS 20% RESULTADOS 20% NOMBRE Práctica Mecánica de Fluidos PRESENTACION 5% EXÁMEN RÁPIO 0% FORMATO 0% Caída de Presión en Tuberías CALCULOS 0% RESULTAOS 0% NOMBRE ISCUSION E RESULTAOS 5% MATRICULA CONCLUSIONES 0% PROFESOR INSTRUCTOR

Más detalles

PRODUCCIÓN Y ALMACENAMIENTO DEL AIRE COMPRIMIDO

PRODUCCIÓN Y ALMACENAMIENTO DEL AIRE COMPRIMIDO 2.1 PRODUCCIÓN Y ALMACENAMIENTO DEL AIRE COMPRIMIDO 1. - EL COMPRESOR El Compresor es el mecanismo que transforma una energía exterior, generalmente eléctrica o termodinámica, en energía neumática. En

Más detalles

Finalmente, se obtienen las cargas térmicas, según condiciones de invierno o verano, que se generan en la estancia.

Finalmente, se obtienen las cargas térmicas, según condiciones de invierno o verano, que se generan en la estancia. La hoja de cálculo PreClimat permite calcular con enorme sencillez la instalación de aire acondicionado en un proyecto de arquitectura de viviendas o locales comerciales. El funcionamiento es muy sencillo,

Más detalles

Regulador PID con convertidores de frecuencia DF5, DV5, DF6, DV6. Página 1 de 10 A Regulador PID

Regulador PID con convertidores de frecuencia DF5, DV5, DF6, DV6. Página 1 de 10 A Regulador PID A Página 1 de 10 A Regulador PID INDICE 1. Regulador PID 3 2. Componente proporcional : P 4 3. Componente integral : I 4 4. Componente derivativa : D 4 5. Control PID 4 6. Configuración de parámetros del

Más detalles

MANUAL DE PROCEDIMIENTO PARA LA INSTALACION Y CONTROL DE ECO-CAR

MANUAL DE PROCEDIMIENTO PARA LA INSTALACION Y CONTROL DE ECO-CAR MANUAL DE PROCEDIMIENTO PARA LA INSTALACION Y CONTROL DE ECO-CAR A/ INSTALACION. Para una óptima instalación del dispositivo Eco-car se deben observar las siguientes pautas: 1.- El dispositivo debe estar

Más detalles

Criterios de cálculo y diseño de flujos laminares

Criterios de cálculo y diseño de flujos laminares Tecnología Industrial Criterios de cálculo y diseño de flujos laminares Patrones de Flujo del Aire. Condiciones de Flujo laminar José Luis Jiménez Álvarez Gerente / TCI, S.L.L. Los patrones de flujo de

Más detalles

OPTIMIZACIÓN DEL FACTOR DE POTENCIA y CALIDAD DE LA ENERGÍA

OPTIMIZACIÓN DEL FACTOR DE POTENCIA y CALIDAD DE LA ENERGÍA OPTIMIZACIÓN DEL FACTOR DE POTENCIA y CALIDAD DE LA ENERGÍA Introducción En la gran mayoría de las industrias, hoteles, hospitales, tiendas departamentales, etc. existen gran cantidad de motores; en equipo

Más detalles

La importancia de dimensionar correctamente los sistemas de frenado en aerogeneradores residenciales.

La importancia de dimensionar correctamente los sistemas de frenado en aerogeneradores residenciales. La importancia de dimensionar correctamente los sistemas de frenado en aerogeneradores residenciales. La instalación de aerogeneradores en entornos urbanos requiere la implementación de importantes medidas

Más detalles

UNIDAD N º 6: Volumen (1ª parte)

UNIDAD N º 6: Volumen (1ª parte) UNIDAD N º 6: Volumen (1ª parte) De manera intuitiva, el volumen de un objeto es el espacio que él ocupa. El procedimiento a seguir para medir el volumen de un objeto dependerá del estado en que se encuentre:

Más detalles

Potencial eléctrico. du = - F dl

Potencial eléctrico. du = - F dl Introducción Como la fuerza gravitatoria, la fuerza eléctrica es conservativa. Existe una función energía potencial asociada con la fuerza eléctrica. Como veremos, la energía potencial asociada a una partícula

Más detalles

CALCULO DE LA ALTURA MANOMÉTRICA

CALCULO DE LA ALTURA MANOMÉTRICA CALCULO E LA ALTURA MANOMÉTRICA PRESIONES Presión atmosférica. Es la fuerza ejercida por la atmósfera por unidad superficie. El valor la presión atmosférica en condiciones normales al nivel l mar es: atmósfera

Más detalles

ANEJO 6 CALCULOS DEL EQUIPO DE BOMBEO

ANEJO 6 CALCULOS DEL EQUIPO DE BOMBEO ANEJO 6 CALCULOS DEL EQUIPO DE BOMBEO INDICE 1. CALCULOS HIDRAULICOS... 3 1.1 DIÁMETRO DE LA TUBERÍA DE IMPULSIÓN DENTRO DEL POZO... 3 1.2 ALTURA MANOMÉTRICA... 4 2. CALCULOS ELÉCTRICOS - BAJA TENSION...

Más detalles

MAGNETISMO INDUCCIÓN ELECTROMAGNÉTICA FÍSICA II - 2011 GUÍA Nº4

MAGNETISMO INDUCCIÓN ELECTROMAGNÉTICA FÍSICA II - 2011 GUÍA Nº4 GUÍA Nº4 Problema Nº1: Un electrón entra con una rapidez v = 2.10 6 m/s en una zona de campo magnético uniforme de valor B = 15.10-4 T dirigido hacia afuera del papel, como se muestra en la figura: a)

Más detalles

1.1 Qué es y para qué sirve un transformador?

1.1 Qué es y para qué sirve un transformador? TRANSFORMADORES_01_CORR:Maquetación 1 16/01/2009 10:39 Página 1 Capítulo 1 1.1 Qué es y para qué sirve un transformador? Un transformador es una máquina eléctrica estática que transforma la energía eléctrica

Más detalles

BANDA CURVA. [Escriba su dirección] [Escriba su número de teléfono] [Escriba su dirección de correo electrónico] INTRODUCCIÓN TOLERANCIAS

BANDA CURVA. [Escriba su dirección] [Escriba su número de teléfono] [Escriba su dirección de correo electrónico] INTRODUCCIÓN TOLERANCIAS ANDA HÖKEN ANDAS CURVA MODULARES ANDA CURVA INTRODUCCIÓN TOLERANCIAS DISEÑO DEL MÓDULO DISEÑO DEL PIÑÓN DISEÑO DE PALETA EMPUJADORA DISEÑO DE TAPÓN CONTENEDOR DE VARILLA INDICACIONES PARA EL MONTAJE CARACTERISTICAS

Más detalles

CAPÍTULO 7 7. CONCLUSIONES

CAPÍTULO 7 7. CONCLUSIONES CAPÍTULO 7 7. CONCLUSIONES 7.1. INTRODUCCIÓN 7.2. CONCLUSIONES PARTICULARES 7.3. CONCLUSIONES GENERALES 7.4. APORTACIONES DEL TRABAJO DE TESIS 7.5. PROPUESTA DE TRABAJOS FUTUROS 197 CAPÍTULO 7 7. Conclusiones

Más detalles

RECOMENDACIONES DE INSTALACIÓN Y MANTENIMIENTO

RECOMENDACIONES DE INSTALACIÓN Y MANTENIMIENTO RECOMENDACIONES DE INSTALACIÓN Y MANTENIMIENTO PARA VÁLVULAS VORTEX Catalogo 25.1.3 RECOMENDACIONES DE INSTALACIÓN PARA VÁLVULAS VORTEX Cuando se instala un regulador de caudal tipo vortex en un aliviadero,

Más detalles

Supongamos que se tiene que montar un pilar de referencia"a" localizado en un plano de replanteo.

Supongamos que se tiene que montar un pilar de referenciaa localizado en un plano de replanteo. EJEMPLOS DE SELECCIÓN DE GRÚAS TELESCÓPICAS Ejemplo 1: selección de la grúa para el montaje de pilares. Supongamos que se tiene que montar un pilar de referencia"a" localizado en un plano de replanteo.

Más detalles

CÁLCULO SECCIÓN CABLEADO DE ALIMENTACIÓN

CÁLCULO SECCIÓN CABLEADO DE ALIMENTACIÓN CÁLCULO SECCIÓN CABLEADO DE ALIMENTACIÓN V 1.0 SEPTIEMBRE 2005 Corriente máxima en el cable (A) CÁLCULO DE LA SECCIÓN MÍNIMA DEL CABLEADO DE ALIMENTACIÓN Longitud del cable en metros 0 1.2 1.2 2.1 2.1

Más detalles

ANTENAS: Teledistribución y televisión por cable

ANTENAS: Teledistribución y televisión por cable 5.1 INTRODUCCIÓN A LA TELEDISTRIBUCIÓN La teledistribución o CATV, podemos considerarla como una gran instalación colectiva, con algunos servicios adicionales que puede soportar y que conectará por cable

Más detalles

NÚCLEO 4 SISTEMA DE CONDUCCIÓN HIDRÁULICA 4.1 CARÁCTERÍSTICAS HIDRÁULICAS DEL SISTEMA

NÚCLEO 4 SISTEMA DE CONDUCCIÓN HIDRÁULICA 4.1 CARÁCTERÍSTICAS HIDRÁULICAS DEL SISTEMA NÚCLEO 4 SISTEMAS DE CONDUCCIÓN HIDRAÚLICA 4.1 CARÁCTERÍSTICAS HIDRÁULICAS DEL SISTEMA La conducción en un sistema de bombeo es uno de los elementos más importantes, ya que su función es precisamente formar

Más detalles

_ Antología de Física I. Unidad II Vectores. Elaboró: Ing. Víctor H. Alcalá-Octaviano

_ Antología de Física I. Unidad II Vectores. Elaboró: Ing. Víctor H. Alcalá-Octaviano 24 Unidad II Vectores 2.1 Magnitudes escalares y vectoriales Unidad II. VECTORES Para muchas magnitudes físicas basta con indicar su valor para que estén perfectamente definidas y estas son las denominadas

Más detalles

5. PÉRDIDAS DE CARGA EN CONDUCTOS CERRADOS O TUBERIAS

5. PÉRDIDAS DE CARGA EN CONDUCTOS CERRADOS O TUBERIAS 5. PÉRIAS E CARGA EN CONUCTOS CERRAOS O TUBERIAS 5. Perfiles de Velocidad: Laminar y Turbulento 5. Radio Hidráulico para Secciones no Circulares 5.3 Pérdidas Primarias y Secundarias 5.4 Ecuación de arcy

Más detalles

ANEXO B (Informativo) IMPACTO TOTAL EQUIVALENTE DE CALENTAMIENTO (TEWI)

ANEXO B (Informativo) IMPACTO TOTAL EQUIVALENTE DE CALENTAMIENTO (TEWI) ANEXO B (Informativo) IMPACTO TOTAL EQUIVALENTE DE CALENTAMIENTO (TEWI) El TEWI (impacto total equivalente de calentamiento) es una forma de evaluar el calentamiento global combinando la contribución directa

Más detalles

CAPITULO II CARACTERISTICAS DE LOS INSTRUMENTOS DE MEDICION

CAPITULO II CARACTERISTICAS DE LOS INSTRUMENTOS DE MEDICION CAPITULO II CARACTERISTICAS DE LOS INSTRUMENTOS DE MEDICION Como hemos dicho anteriormente, los instrumentos de medición hacen posible la observación de los fenómenos eléctricos y su cuantificación. Ahora

Más detalles

ASPECTOS GENERALES PARA LA SOLUCIÓN DE PROBLEMAS RELACIONADOS CON LA CONDUCCIÓN TRANSITORIA.

ASPECTOS GENERALES PARA LA SOLUCIÓN DE PROBLEMAS RELACIONADOS CON LA CONDUCCIÓN TRANSITORIA. CONDUCCIÓN TRANSITORIA Aquí encontrarás Los métodos gráficos y el análisis teórico necesario para resolver problemas relacionados con la transferencia de calor por conducción en estado transitorio a través

Más detalles

Envasado gravimétrico de alta precisión y velocidad para líquidos y gases mediante sistemas de medición basados en el efecto de Coriolis

Envasado gravimétrico de alta precisión y velocidad para líquidos y gases mediante sistemas de medición basados en el efecto de Coriolis Envasado gravimétrico de alta precisión y velocidad para líquidos y gases mediante sistemas de medición basados en el efecto de Coriolis La medición directa del caudal másico permite la determinación exacta

Más detalles

1.1. Sección del núcleo

1.1. Sección del núcleo 1. CALCULO ANALÍTICO DE TRANSFORMADORES DE PEQUEÑA POTENCIA Los transformadores tienen rendimiento muy alto; aunque éste no lo sea tanto en la pequeña potencia, podemos considerar que la potencia del primario

Más detalles

Las ratios financieras

Las ratios financieras Informes en profundidad 10 Las ratios financieras Barcelona Activa SAU SPM, 1998-2011 Índice 01 Introducción 02 03 04 05 Los estados financieros La liquidez La solvencia La rentabilidad 06 Conclusiones

Más detalles

Ejemplo 2. Velocidad de arrastre en un alambre de cobre

Ejemplo 2. Velocidad de arrastre en un alambre de cobre Ejemplo 1 Cual es la velocidad de desplazamiento de los electrones en un alambre de cobre típico de radio 0,815mm que transporta una corriente de 1 A? Si admitimos que existe un electrón libre por átomo

Más detalles

ESTUDIO DEL SISTEMA ESTÁTICO DE PROTECCIÓN DE UNA TURBINA A GAS

ESTUDIO DEL SISTEMA ESTÁTICO DE PROTECCIÓN DE UNA TURBINA A GAS ESTUDIO DEL SISTEMA ESTÁTICO DE PROTECCIÓN DE UNA TURBINA A GAS Patricio León Alvarado 1, Eduardo León Castro 2 1 Ingeniero Eléctrico en Potencia 2000 2 Director de Tesis. Postgrado en Ingeniería Eléctrica

Más detalles

PRÁCTICA: TUNEL DE VIENTO

PRÁCTICA: TUNEL DE VIENTO PRÁCTICA: TUNEL DE VIENTO htttp://www.uco.es/moodle Descripción de los equipos y esquema de la instalación El equipo utilizado en esta práctica es un túnel de aerodinámico subsónico HM 70 con un tramo

Más detalles

Tema 8. Fórmulas empíricas para el cálculo de pérdidas de carga continuas en tuberías

Tema 8. Fórmulas empíricas para el cálculo de pérdidas de carga continuas en tuberías Tema 8. Fórmulas empíricas para el cálculo de pérdidas de carga continuas en tuberías 1. Fórmulas para el régimen turbulento liso. Fórmulas para el régimen turbulento en la zona de transición 3. Fórmulas

Más detalles

Ejercicios Propuestos Inducción Electromagnética.

Ejercicios Propuestos Inducción Electromagnética. Ejercicios Propuestos Inducción Electromagnética. 1. Un solenoide de 2 5[] de diámetro y 30 [] de longitud tiene 300 vueltas y lleva una intensidad de corriente de 12 [A]. Calcule el flujo a través de

Más detalles

Problemas resueltos. Consideramos despreciable la caída de tensión en las escobillas, por lo que podremos escribir:

Problemas resueltos. Consideramos despreciable la caída de tensión en las escobillas, por lo que podremos escribir: Problemas resueltos Problema 1. Un motor de c.c (excitado según el circuito del dibujo) tiene una tensión en bornes de 230 v., si la fuerza contraelectromotriz generada en el inducido es de 224 v. y absorbe

Más detalles

Tema Quemadores de gas atmosféricos

Tema Quemadores de gas atmosféricos Tema Quemadores de gas atmosféricos 1. TIPOS DE QUEMADORES ATMOSFERICOS PARA GASES. Los quemadores para combustibles gaseosos suelen ser mas sencillos que los de combustibles líquidos debido fundamentalmente

Más detalles

CAPÍTULO I INTRODUCCIÓN Y OBJETIVOS

CAPÍTULO I INTRODUCCIÓN Y OBJETIVOS CAPÍTULO I INTRODUCCIÓN Y OBJETIVOS 1.1 Introducción. La energía es el pilar del avance industrial de todos los países, parte importante del desarrollo social y elemento esencial para el progreso tecnológico.

Más detalles

Calderas y Sistemas de Agua Caliente.

Calderas y Sistemas de Agua Caliente. Calderas y Sistemas de Agua Caliente. El objetivo del presente artículo es entregar información técnica para diseñar, especificar y operar sistemas de agua caliente industriales. 1. Introducción Con frecuencia

Más detalles

DISEÑO DE CONDUCTOS DE SISTEMAS DE

DISEÑO DE CONDUCTOS DE SISTEMAS DE CAPÍTULO 3 DISEÑO DE CONDUCTOS DE SISTEMAS DE VENTILACION LOCALIZADA POR EXTRACCION (SVLE) 3.1. Introducción 2 3.1.1. Etapas preliminares 2 3.2. Ecuaciones utilizadas para el calculo 2 3.2.1. Ecuación

Más detalles

IMPLANTACIONES DE ERP. CÓMO CONSEGUIR EL ÉXITO? MasEmpresa

IMPLANTACIONES DE ERP. CÓMO CONSEGUIR EL ÉXITO? MasEmpresa IMPLANTACIONES DE ERP. CÓMO CONSEGUIR EL ÉXITO? MasEmpresa Implantaciones de ERP. Cómo conseguir el éxito?. Parte I Aunque los sistemas de información para la gestión ERPs tienen muchos años de historia,

Más detalles

LAS RATIOS FINANCIERAS

LAS RATIOS FINANCIERAS LAS RATIOS FINANCIERAS Sumario 1. Introducción 2. Estados Financieros 3. Liquidez 4. Solvencia 5. Rentabilidad 6. Conclusiones Última actualización: 25/03/09 Página 1 de 8 1. Introducción Para realizar

Más detalles

ELEL10. Fuerza contraelectromotriz (fcem)

ELEL10. Fuerza contraelectromotriz (fcem) Los motores de corriente directa transforman la energía eléctrica en energía mecánica. Impulsan dispositivos tales como malacates, ventiladores, bombas, calandrias, prensas, preforadores y carros. Estos

Más detalles

INSTALACIONES DE CLIMATIZACION

INSTALACIONES DE CLIMATIZACION INSTALACIONES DE CLIMATIZACION SISTEMAS DE COMPRESION MECANICA En este tipo de sistemas la potencia térmica producida y la potencia consumida para producirla, están directamente vinculadas al caudal másico

Más detalles

SISTEMAS TODO AIRE SISTEMAS TODO AIRE CLASIFICACIÓN SISTEMA TODO AIRE DE VOLUMEN CONSTANTE V.A.C.

SISTEMAS TODO AIRE SISTEMAS TODO AIRE CLASIFICACIÓN SISTEMA TODO AIRE DE VOLUMEN CONSTANTE V.A.C. SISTEMAS TODO AIRE SISTEMAS TODO AIRE Los sistemas todo aire, son aquellos que utilizan un caudal de aire, frío o caliente, que es enviado al local a acondicionar, donde directamente se encargará de conseguir

Más detalles

Difusor de techo 4-DF

Difusor de techo 4-DF Difusor de techo 4-DF Ferdinand Schad KG Steigstraße 25-27 D-78600 Kolbingen Telefon +49 (0) 74 63-980 - 0 Telefax + 49 (0) 74 63 980 200 info@schako.de www.schako.de Contenido Descripción...3 Fabricación...

Más detalles

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD Pág. Página 9 PRACTICA Sistemas lineales Comprueba si el par (, ) es solución de alguno de los siguientes sistemas: x + y 5 a) x y x y 5 x + y 8 El par (, ) es solución de un sistema si al sustituir x

Más detalles

Apoyo para la preparación de los estudios de Ingeniería y Arquitectura Física (Preparación a la Universidad) Unidad 4: Vectores

Apoyo para la preparación de los estudios de Ingeniería y Arquitectura Física (Preparación a la Universidad) Unidad 4: Vectores Apoyo para la preparación de los estudios de Ingeniería y Arquitectura Física (Preparación a la Universidad) Unidad 4: Vectores Universidad Politécnica de Madrid 5 de marzo de 2010 2 4.1. Planificación

Más detalles

TALLER DE EFICIENCIA ENERGÉTICA EN SISTEMAS DE BOMBEO DE AGUA DE SERVICIO PÚBLICO MUNICIPAL. M. en I. Ramón Rosas Moya

TALLER DE EFICIENCIA ENERGÉTICA EN SISTEMAS DE BOMBEO DE AGUA DE SERVICIO PÚBLICO MUNICIPAL. M. en I. Ramón Rosas Moya TALLER DE EFICIENCIA ENERGÉTICA EN SISTEMAS DE BOMBEO DE AGUA DE SERVICIO PÚBLICO MUNICIPAL M. en I. Ramón Rosas Moya CARACTERÍSTICAS HIDRÁULICAS Uno de los aspectos más relevantes a definir con respecto

Más detalles

El ímpetu de un cuerpo es el producto de la masa del cuerpo por su vector velocidad

El ímpetu de un cuerpo es el producto de la masa del cuerpo por su vector velocidad 3. Fuerza e ímpetu El concepto de ímpetu (cantidad de movimiento o momentum surge formalmente en 1969 y se define como: El ímpetu de un cuerpo es el producto de la masa del cuerpo por su vector velocidad

Más detalles

SISTEMAS DE CLIMATIZACIÓN

SISTEMAS DE CLIMATIZACIÓN SISTEMAS DE CLIMATIZACIÓN Bibliografía Teoría: Manual de Aire Acondicionado. Carrier. Ed. Marcombo, 1996. Capítulo 9-12. Air conditioning. Principles and Systems. Edward G. Pita. Ed. Prentice-Hall, 1998.

Más detalles

TEMA 4: ANÁLISIS DE LOS ESTADOS FINANCIEROS 4.1. INTRODUCCIÓN 2 4.2. ANÁLISIS PATRIMONIAL: ESTRUCTURA Y EQUILIBRIO PATRIMONIAL 2

TEMA 4: ANÁLISIS DE LOS ESTADOS FINANCIEROS 4.1. INTRODUCCIÓN 2 4.2. ANÁLISIS PATRIMONIAL: ESTRUCTURA Y EQUILIBRIO PATRIMONIAL 2 TEMA 4: ANÁLISIS DE LOS ESTADOS FINANCIEROS 4.1. INTRODUCCIÓN 2 4.2. ANÁLISIS PATRIMONIAL: ESTRUCTURA Y EQUILIBRIO PATRIMONIAL 2 4.2.1. RELACIÓN ENTRE EL ACTIVO Y EL PASIVO: EL EQUILIBRIO FINANCIERO 2

Más detalles

LÍNEAS DEL DIAGRAMA DE MOLLIER

LÍNEAS DEL DIAGRAMA DE MOLLIER DIAGRAMA DE MOLLIER El refrigerante cambia de estado a lo largo del ciclo frigorífico como hemos visto en el capítulo anterior. Representaremos sobre el diagrama de p-h las distintas transformaciones que

Más detalles

Bloque II: Principios de máquinas

Bloque II: Principios de máquinas Bloque II: Principios de máquinas 1. Conceptos Fundamentales A. Trabajo En términos de la física y suponiendo un movimiento rectilíneo de un objeto al que se le aplica una fuerza F, se define como el producto

Más detalles

EJERCICIOS PROPUESTOS DE APLICACIONES DE LA ECUACIÓN DE BERNOULLI

EJERCICIOS PROPUESTOS DE APLICACIONES DE LA ECUACIÓN DE BERNOULLI EJERCICIOS PROPUESTOS DE APLICACIONES DE LA ECUACIÓN DE BERNOULLI 1) A través del medidor Venturi de la figura fluye hacia abajo aceite con gravedad específica de 0,90. Si la deflexión del manómetro h

Más detalles

Resortes y fuerzas. Analiza la siguiente situación. Ley de Hooke. 2do Medio > Física Ley de Hooke. Qué aprenderé?

Resortes y fuerzas. Analiza la siguiente situación. Ley de Hooke. 2do Medio > Física Ley de Hooke. Qué aprenderé? 2do Medio > Física Ley de Hooke Resortes y fuerzas Analiza la siguiente situación Aníbal trabaja en una fábrica de entretenimientos electrónicos. Es el encargado de diseñar algunas de las máquinas que

Más detalles

No hay resorte que oscile cien años...

No hay resorte que oscile cien años... No hay resorte que oscile cien años... María Paula Coluccio y Patricia Picardo Laboratorio I de Física para Biólogos y Geólogos Depto. de Física, FCEyN, UBA - 1999 Resumen: En el presente trabajo nos proponemos

Más detalles

PN 05 Técnicas básicas de panadería I

PN 05 Técnicas básicas de panadería I 4. AMASAR. DEFINICIÓN Y TIPOS DE MAQUINARIA EM- PLEADA Podemos definir amasar como: Trabajar a mano o máquina masas compuestas, fundamentalmente de harina, agua, sal y levadura, además de otros elementos

Más detalles

CONDICIONES DE INSTALACIÓN DE LOS SENSORES DE NIVEL CONDUCTIVOS

CONDICIONES DE INSTALACIÓN DE LOS SENSORES DE NIVEL CONDUCTIVOS Se mencionan a continuación las consideraciones que deben tenerse en cuenta durante la instalación de los sensores de nivel conductivos en lo relativo al depósito, los cables de los electrodos, etc. El

Más detalles

PROYECTO FIN DE CARRERA CLIMATIZACIÓN DE UN HOTEL EN PALMA DE MALLORCA

PROYECTO FIN DE CARRERA CLIMATIZACIÓN DE UN HOTEL EN PALMA DE MALLORCA PROYECTO FIN DE CARRERA CLIMATIZACIÓN DE UN HOTEL EN PALMA DE MALLORCA Autor: Cerdó Morell, Jaime. Director: Hernández Bote, Juan Antonio. Entidad Colaboradora: ICAI Universidad Pontificia Comillas. MADRID,

Más detalles

Ejercicios resueltos

Ejercicios resueltos Ejercicios resueltos oletín 6 Campo magnético Ejercicio Un electrón se acelera por la acción de una diferencia de potencial de 00 V y, posteriormente, penetra en una región en la que existe un campo magnético

Más detalles

Examen de TEORIA DE MAQUINAS Junio 94 Nombre...

Examen de TEORIA DE MAQUINAS Junio 94 Nombre... Examen de TEORIA DE MAQUINAS Junio 94 Nombre... El robot plano de la figura transporta en su extremo una masa puntual de magnitud 5M a velocidad constante horizontal de valor v. Cada brazo del robot tiene

Más detalles

9) UPS s: EN QUE CONSISTEN DE QUE Y COMO PROTEGEN

9) UPS s: EN QUE CONSISTEN DE QUE Y COMO PROTEGEN 9) UPS s: EN QUE CONSISTEN DE QUE Y COMO PROTEGEN En el mercado actual hay gran cantidad de diseños de UPS. Puede llegar a ser confuso determinar que tipo de equipo es el más conveniente para nuestra carga

Más detalles

Rejilla de ventilación

Rejilla de ventilación Rejilla de ventilación IB Ferdinand Schad KG Steigstraße 25-27 D-78600 Kolbingen Teléfono: +49 (0) 74 63-980 - 0 Fax: +49 (0) 74 63-980 - 200 info@schako.de www.schako.de Contenido Descripción...3 Fabricación...

Más detalles

Objetivos específicos:

Objetivos específicos: Universidad Nacional Experimental del Tácira Departamento de Ingeniería Mecánica Núcleo de Termofluidos Asignatura: Laboratorio de Mecánica de Fluidos Código: 011 L Carrera: Ingeniería Mecánica Profesor:

Más detalles

6 CONCLUSIONES Y RECOMENDACIONES

6 CONCLUSIONES Y RECOMENDACIONES 6 Conclusiones y recomendaciones 109 6 CONCLUSIONES Y RECOMENDACIONES 6.1 CONCLUSIONES La presente investigación se ha dedicado al estudio del ángulo de presión, radio de curvatura y presión de contacto

Más detalles

Capítulo 6. Fluidos reales

Capítulo 6. Fluidos reales Capítulo 6 Fluidos reales 1 Viscosidad El rozamiento en el movimiento de los fluidos se cuantifica a través del concepto de viscosidad, η, que se define como: F A = η v d El coeficiente de viscosidad tiene

Más detalles

ENSAYOS MECÁNICOS II: TRACCIÓN

ENSAYOS MECÁNICOS II: TRACCIÓN 1. INTRODUCCIÓN. El ensayo a tracción es la forma básica de obtener información sobre el comportamiento mecánico de los materiales. Mediante una máquina de ensayos se deforma una muestra o probeta del

Más detalles

FENÓMENOS DE TRANSPORTE TRABAJO PRACTICO: FLUJO DE FLUIDOS. FACTORES DE FRICCIÓN EN TUBERÍAS. D P 2 L v

FENÓMENOS DE TRANSPORTE TRABAJO PRACTICO: FLUJO DE FLUIDOS. FACTORES DE FRICCIÓN EN TUBERÍAS. D P 2 L v UNIVERSIDAD TECNOLOGICA NACIONAL Facultad Regional Rosario Departamento de Ingeniería Química FENÓMENOS DE TRANSPORTE TRABAJO PRACTICO: FLUJO DE FLUIDOS. FACTORES DE FRICCIÓN EN TUBERÍAS OBJETIVO: Determinar

Más detalles

Covarianza y coeficiente de correlación

Covarianza y coeficiente de correlación Covarianza y coeficiente de correlación Cuando analizábamos las variables unidimensionales considerábamos, entre otras medidas importantes, la media y la varianza. Ahora hemos visto que estas medidas también

Más detalles

Máster Universitario en Profesorado

Máster Universitario en Profesorado Máster Universitario en Profesorado Complementos para la formación disciplinar en Tecnología y procesos industriales Aspectos básicos de la Tecnología Eléctrica Contenido (II) SEGUNDA PARTE: corriente

Más detalles

Estos elementos mecánicos suelen ir montados sobre los ejes de transmisión, que son piezas cilíndricas sobre las cuales se colocan los mecanismos.

Estos elementos mecánicos suelen ir montados sobre los ejes de transmisión, que son piezas cilíndricas sobre las cuales se colocan los mecanismos. MECANISMOS A. Introducción. Un mecanismo es un dispositivo que transforma el movimiento producido por un elemento motriz (fuerza de entrada) en un movimiento deseado de salida (fuerza de salida) llamado

Más detalles

El generador de Van de Graaff

El generador de Van de Graaff Cuando se introduce un conductor cargado dentro de otro hueco y se ponen en contacto, toda la carga del primero pasa al segundo, cualquiera que sea la carga inicial del conductor hueco Teóricamente, el

Más detalles

Salida fluido frío. Salida fluido caliente. Flujo paralelo 97,75 ºC Flujo contracorriente 101,99 ºC

Salida fluido frío. Salida fluido caliente. Flujo paralelo 97,75 ºC Flujo contracorriente 101,99 ºC EJERCICIOS RESUELTOS a) Cálculos calor 1. Calcular el diferencial logarítmico de temperatura en un intercambiador a flujo paralelo y flujo contracorriente, sabiendo que las temperaturas son las siguientes:

Más detalles

MODULO Nº12 TRANSISTORES MOSFET

MODULO Nº12 TRANSISTORES MOSFET MODULO Nº12 TRANSISTORES MOSFET UNIDAD: CONVERTIDORES CC - CC TEMAS: Transistores MOSFET. Parámetros del Transistor MOSFET. Conmutación de Transistores MOSFET. OBJETIVOS: Comprender el funcionamiento del

Más detalles

MODULO II - Unidad 3

MODULO II - Unidad 3 Calificación de instaladores solares y seguimiento de calidad para sistemas solares térmicos de pequeña escala MODULO II - Unidad 3 Profesores Wilfredo Jiménez + Massimo Palme + Orlayer Alcayaga Una instalación

Más detalles