MODELO DE RESPUESTA SEGUNDA PRUEBA INTEGRAL MATEMÁTICA I ( ) Lapso

Tamaño: px
Comenzar la demostración a partir de la página:

Download "MODELO DE RESPUESTA SEGUNDA PRUEBA INTEGRAL MATEMÁTICA I ( ) Lapso"

Transcripción

1 Primera Prueba Integral Lapso UNIVERSIDAD NACIONAL ABIERTA CENTRO LOCAL METROPOLITANO ÁREA DE MATEMÁTICA MODELO DE RESPUESTA SEGUNDA PRUEBA INTEGRAL MATEMÁTICA I ( ) Lapso.004- OBJ PTA Si α y β son las aproximaciones por defecto y por exceso con cinco cifras significativas del α + β número 64,79, entonces es igual a: De acuerdo a la definición de aproximaciones por defecto y por exceso y de cifras significativas dadas en las páginas 70-7 del Módulo I, tenemos que: α 64, 7 y β 64, 8. Entonces: OBJ PTA Verifica que: α + β [ + ) + ] ( 64,7 + 64, 8 8, [ ( + ) + ] + [( ) + ] ,7 + + [ ) + ] ( + Sumando las expresiones obtenidas, resulta: ( + )( ) + ( + ( ) )( ) Por tanto no se verifica la igualdad

2 Primera Prueba Integral Lapso OBJ PTA Indica los números naturales que están en el conjunto: A { x IR / l x l < }, Según lo señalado en la p. del Módulo I, tenemos l x l < < x < + < x < < x < Por lo tanto: 4 < x < 6. A { x IR / 4 < x < 6 } ( 4, 6) Los número naturales del intervalo (-4, 6) son {0,,,, 4, } OBJ 4 PTA 4 Determina el valor de p de tal forma que los puntos: A (7, ), B (, 0), C (p, ), sean los vértices de un triángulo rectángulo, con ángulo recto en B. Los puntos A(7,), B(, 0) y C(p, ) deben formar un triángulo rectángulo con ángulo recto en B. suponemos p como en la siguiente gráfica: y A B 0 p C 7 x Para que el ángulo recto esté en el punto B, el lado AC, debe ser la hipotenusa del triángulo. Por lo tanto, se debe cumplir que AC BC + AB. (*) Usamos la fórmula de la distancia entre dos puntos del plano, (ver página 46, Unidad 4, Módulo II del texto), para hallar las longitudes de los segmentos AB, BC y AC. En efecto; Ahora, AB d(a(7,); B(,0)) ( 7 ( ) ) + ( 0) 7. BC d(b(,0); C(p, )) ( p ( ) ) + ( 0) ( p + ) + 4 AC d(a(7,); C(p, )) ( p 7 ) + ( ) ( p 7 ) AB 7, BC (p+) + 4 y AC (p 7) +. +.

3 Primera Prueba Integral Lapso Entonces, según la expresión (*) tenemos: 7 + (p+) + 4 (p 7) + De donde, 7+ p + p p 4 p Luego, 6p - 4, por tanto: p -/4 OBJ PTA Para el logro de este objetivo debes responder correctamente dos opciones. Responde con una V si los enunciados siguientes son verdaderos o con una F si son falsos: Justifica tus respuestas a. Una función f definida en un intervalo J es creciente si se verifica la siguiente propiedad: f(x ) > f(x ) para todos los x, x del intervalo J satisfaciendo x < x. b. Una función f definida en un intervalo J es decreciente si se verifica la siguiente propiedad: f(x ) < f(x ) para todos los x, x del intervalo J satisfaciendo x < x. c. La función h: R R definida por h(t) t + es decreciente.. a. F Ver la definición de función Creciente dada en la página del Módulo II del texto. b. F Ver la definición de función Decreciente dada en la página del Módulo II del texto. c. F Una forma de ver esto es haciendo la gráfica de h y observando que a medida que t crece los valore de h(t) también crecen, es decir h es una función creciente. Otra manera de ver esto es tomar x < y, entonces x < y y también tenemos que x + < y + y así resulta que h(x) < h(y), es decir h es creciente. OBJ 6 PTA 6 Sean g, h: IR IR funciones tales que: h( x ) x y f( h ( x ) ) 4x + 4x. Si z es tal que f( h ( z ) ), calcula h( z ). Como f( h ( z ) ), resulta que: 4z + 4z. Resolviendo tenemos: 4 ± z + 4z 0 z. z o z. 8 De esta manera tenemos dos respuestas dependiendo del valor de z que tomemos: Para z resulta h( z ) h( ) h ( ) ( ) 6 Para z resulta h( z ) h( ) h ( ) ( ) -. OBJ 7 PTA 7

4 Primera Prueba Integral Lapso A continuación te presentamos el número de vehículos que pasó por una esquina en un lapso de tiempo de un día lunes. Los datos son tomados cada cinco minutos Divide este grupo de datos en intervalos de clases y determina la frecuencia absoluta y relativa del primero de estos intervalos. El dato menor es 0 y el mayor 9. Como queremos dividir los datos en intervalos de clase, consideraremos intervalos de longitud (ver páginas 79, del Módulo II): Así resultan los intervalos de clase: L 0,4. [0 ;,4), [,4 ; 4,8), [4,8 ; 7,). [7, ; 9,6), [9,6 ; ] La frecuencia absoluta del primer intervalo es el número de datos en este intervalo (ver p.76 del Módulo II). En este caso es igual a. La frecuencia relativa del primer intervalo es el cociente entre la frecuencia absoluta del intervalo y el número total de datos (ver p.77 del Módulo II). En nuestro caso, la frecuencia relativa es igual a 0, OBJ 8 PTA 8 Calcula la suma de los números naturales múltiplos 7 comprendidos entre y 8.4. Los múltiplos de siete comprendidos entre y 8.4 son: 7, 4,, 8,..., 8 4 o equivalentemente: 7., 7., 7., 7.4,..., Estos números forman una progresión aritmética de razón 7. De acuerdo a la fórmula dada en la p.7 del texto la suma de estos números es: a + a S OBJ 9 PTA 9 Sea f:ir + IR la función definida por f(x) x +. Calcula lím f ( x ) f ( ) x x (ver ejercicio p. 00 del Módulo III) lím f ( x ) f ( ) x x lím x + x x

5 Primera Prueba Integral Lapso lím x + x x + + x + x + lím x lím x lím x ( x + ) ( ) ( x ) ( x + + ) x + ( x ) ( x + + ) x + + ( Por qué?). (Multiplicando por la conjugada del numerador) 4 (Simplificando y evaluando en el límite). Matemáticas I ( 7) OBJ 0 PTA 0 Si un cono de altura h 0 cm y radio r 0 cm, le aumentamos la altura en 40% y el radio se le disminuye en 0%, entonces el volumen del nuevo cono es: Justifica tu Respuesta a. 4000π cm b. 00,6π cm c.,4π cm d. 46π cm. Sabemos que el volumen de un cono de altura h y radio r está dado por la fórmula ( ver p.70 πr h del Módulo IV (7): V. La altura se incrementa en un 40% de h, así la nueva altura es 40 H h + h h + 0,4h,4h,4. 0 cm 4 cm 00 El radio es disminuido en un 0% de r esto es 0,r. Entonces l el nuevo radio es igual a: R r 0,r 0,9r 0,9. 0 cm 8 cm Entonces el volumen de nuevo cono obtenido es ( 8r ) πr H π 4 46 π cm. Opción correcta d. OBJ PTA 7 4 Determina si la sucesión cuyos primeros tres términos son,, es una progresión aritmética y en caso afirmativo calcula el cuarto término de la sucesión.

6 Primera Prueba Integral Lapso Al hacer la diferencia de dos términos consecutivos, tenemos: a a ( ) a a ( ) +. Como la diferencia entre términos consecutivos la sucesión es una progresión aritmética (ver p.4 del Módulo IV (7))de razón r. Observa que: a 7 7, a a + r 4 a a + r Su cuarto término es: a 4 a + r + ( ). También se puede calcular usando la fórmula: a n a + (n ) r, n Matemáticas I (76) OBJ 0 PTA 0 Una empresa vende semanalmente.000 piezas de un producto a un precio de Bs. 00 la unidad. Mientras que si el precio es de Bs. 00, vende solo 4000 unidades. Determina la ecuación de la oferta de este bien, sabiendo que la relación entre la oferta S y el precio P es lineal. : Como la relación entre el precio y la oferta es lineal, tenemos una ecuación de la oferta del tipo: S a + bp. Según los datos suministrados, resulta: 000 a + 00b [` ], 4000 a + 00b [` ]. Restando [] a [], obtenemos: b. b 0. Sustituyendo este valor de b en [` ], se tiene: 000 a + 000, a 000. En consecuencia la ecuación pedida es: S P OBJ PTA Una persona compra el mismo día dos bienes A y B, por Bs.80 y Bs. 0, respectivamente. La A función valor del bien A, V t, viene dada por:

7 Primera Prueba Integral Lapso A V β t t α e, t 0, α > 0, β > 0, B mientras que la del bien B, V t, es: B Vt a t, t 0, a > 0. Determina explícitamente las funciones de valor de cada uno de los bienes si al cabo de tres () años, el valor del bien B excede al de A en 0 bolívares. De acuerdo con las condiciones del problema se tiene: A B V0 80 y V0 0, es decir, α 80 y a 0. B A Por otro lado, V - V 0, por lo que: (0 ) 80 e β 0, de donde: e β 6, 80 6 Ln 80 Ln 0,76 0,7 β 0,94, En definitiva, las funciones de valor son: A -0,94 t V t 80 e B Vt 0 t. Matemáticas I (77) OBJ 0 PTA 0 Resuelve el siguiente sistema de ecuaciones con números reales, utilizando una demostración por agotamiento de casos, analizando las dos situaciones que se presentan, según si y 0 o y 0. x y x. xy y Caso : y 0. El sistema de ecuaciones se transforma: x x. y 0 Ahora resolviendo la ecuación x x, tenemos: x x x x 0 x (x ) 0 x 0 o x. Por lo tanto, hay dos soluciones que resuelven el sistema: x 0, y 0 ó x, y 0. Caso : y 0.

8 Primera Prueba Integral Lapso En la ecuación x y y se puede simplificar por y, resultando x, luego Al sustituir este valor en la primera ecuación del sistema, obtenemos: y 9 Por lo tanto, y + y así y ±. 9 Luego, en este caso también tenemos dos soluciones: x, y ó x, y Resultando, en total, hay cuatro posible soluciones del sistema propuesto. OBJ PTA Para el logró del objetivos debes responder dos partes correctamente. Modela las siguientes situaciones a través de ecuaciones: a. La suma de tres números impares consecutivos es igual a. b. Hace quince años la edad de Pedro era el triple de la edad de María. c. Un número de dos cifras excede en quince a siete veces la suma de sus dígitos x. a. Si denotamos por x al primero de los números impares el planteamos nos indica que: x + x + + x +4. Si denotamos por n+ al primer número, resulta la ecuación: n + + n + + n + 7. b. Denotemos por P la edad actual de Pedro y por M la de María, entonces tenemos que: P ( M ). c. Aquí denotamos por y la cifras de las unidades del número y por x la cifras de las decenas, es decir nuestro número es xy. Entonces el planteamiento nos dice que: 0x + y + 7(x + y). Fin del Modelo

MODELO DE RESPUESTAS. OBJ 1 PTA 1 Si la suma de dos números enteros consecutivos que son múltiplos de 7 es 175. Halla el valor de los números.

MODELO DE RESPUESTAS. OBJ 1 PTA 1 Si la suma de dos números enteros consecutivos que son múltiplos de 7 es 175. Halla el valor de los números. Universidad Nacional Abierta Vicerrectorado Académico Área de Matemática Lapso 008 - INTEGRAL MATEMÁTICA I (175-176-177) FECHA PRESENTACIÓN: 10-01-008 MODELO DE RESPUESTAS OBJ 1 PTA 1 Si la suma de dos

Más detalles

PAU MATEMÁTICAS II. JUNIO Bloque 1. ÁLGEBRA LINEAL Problema 1.1. Dado el sistema dependiente del parámetro real α

PAU MATEMÁTICAS II. JUNIO Bloque 1. ÁLGEBRA LINEAL Problema 1.1. Dado el sistema dependiente del parámetro real α PAU MATEMÁTICAS II. JUNIO 8 Bloque. ÁLGEBRA LINEAL Problema.. Dado el sistema dependiente del parámetro real α αx + y + z x + αy + z, se pide x + y + αz a) Determinar, razonadamente, los valores de α para

Más detalles

EJERCICIOS PARA VERANO. MATEMÁTICAS I 1º BACH

EJERCICIOS PARA VERANO. MATEMÁTICAS I 1º BACH Desarrollar los siguiente valores absolutos f(x) = x² + 5x 4 - x - 2 f(x) = x² -4x + 3 + x - 3 f(x) = x x f(x) = x / x Resolver las ecuaciones exponenciales: Resolver los sistemas de ecuaciones exponenciales:

Más detalles

El otro número debería tener entre sus factores al menos 2 3. El número mínimo de factores comunes es 1. La opción correcta es la c.

El otro número debería tener entre sus factores al menos 2 3. El número mínimo de factores comunes es 1. La opción correcta es la c. Preuniversitario Robert Todd Gregory. Carrera 9, calle #-7. Frente a la bomba Prueba aptitud académica 006. Solucionario del Modelo I ) Utilizando las respuestas podemos resolver fácilmente el problema.

Más detalles

2. Hallar las soluciones enteras de la ecuación. x 4 + y 4 = 3x 3 y.

2. Hallar las soluciones enteras de la ecuación. x 4 + y 4 = 3x 3 y. Sesión 1. Se considera un polígono regular de 90 vértices, numerados del 1 al 90 de manera aleatoria. Probar que siempre podemos encontrar dos vértices consecutivos cuyo producto es mayor o igual que 014.

Más detalles

1 a) Aplica a la figura una traslación de vector ( 7, -3). Halla la figura homóloga con respecto a una simetría axial de eje OX

1 a) Aplica a la figura una traslación de vector ( 7, -3). Halla la figura homóloga con respecto a una simetría axial de eje OX MATEMÁTICAS º.E.S.O Ejercicios de repaso Movimientos en el plano. Geometría a Aplica a la figura una traslación de vector 7, -. Halla la figura homóloga con respecto a una simetría aial de eje OX b Aplica

Más detalles

1. He escrito el No he escrito el He escrito el No he escrito el 4.

1. He escrito el No he escrito el He escrito el No he escrito el 4. º Nivel. El número que está justamente entre 8 y 0 es 80 B) 0 C) 8 E) 80. Halla la suma de todos los primos comprendidos entre y 00 que verifiquen ser múltiplos de más y múltiplos de 5 menos. 8 B) 7 C)

Más detalles

1.- Entre todos los triángulos rectángulos de 5 metros de hipotenusa, determina los catetos del de área máxima. Solución:

1.- Entre todos los triángulos rectángulos de 5 metros de hipotenusa, determina los catetos del de área máxima. Solución: RELACIÓN DE PROBLEMAS DE SELECTIVIDAD DE ANÁLISIS. I Departamento de Matemáticas 1.- Entre todos los triángulos rectángulos de 5 metros de hipotenusa, determina los catetos del de área máxima. Función

Más detalles

Trigonometría. 1. Ángulos

Trigonometría. 1. Ángulos Trigonometría Ángulos Hasta ahora se han considerado los ángulos como la porción del plano comprendida entre dos semirrectas con el origen común De esta manera, la medida de un ángulo está comprendida

Más detalles

Seminario de problemas. Curso Hoja 5

Seminario de problemas. Curso Hoja 5 Seminario de problemas. Curso 2014-15. Hoja 5 29. Encuentra los números naturales N que cumplen las siguientes condiciones: sus únicos divisores primos son 2 y 3, y el número de divisores de N 2 es el

Más detalles

EJERCICIOS DE VERANO MATEMÁTICAS 3º ESO

EJERCICIOS DE VERANO MATEMÁTICAS 3º ESO EJERCICIOS DE VERANO MATEMÁTICAS 3º ESO Página 1 de 14 Entregar el día del examen de recuperación de matemáticas. Será condición indispensable para aprobar la asignatura. 1. Calcula: NUMEROS ENTEROS. FRACCIONES.

Más detalles

RESOLUCIÓN DE ACTIVIDADES

RESOLUCIÓN DE ACTIVIDADES RESOLUCIÓN DE ACTIVIDADES Actividades iniciales. Dada la recta del plano de ecuación x 6y + = 0, escríbela en forma continua, paramétrica, vectorial y explícita. La recta x 6y + = 0 pasa por el punto (0,

Más detalles

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD Opción A Ejercicio 1.- [2 5 puntos] Una ventana normanda consiste en un rectángulo coronado con un semicírculo. De entre todas las ventanas normandas de perímetro 10 m, halla las dimensiones del marco

Más detalles

Relación Ecuaciones. Ecuaciones de primer grado. Matemáticas. Resolver las siguientes ecuaciones: 5(x + 1) [1] = x + 3 5x x + 2 [2] 3 {3

Relación Ecuaciones. Ecuaciones de primer grado. Matemáticas. Resolver las siguientes ecuaciones: 5(x + 1) [1] = x + 3 5x x + 2 [2] 3 {3 Relación Ecuaciones Matemáticas Ecuaciones de primer grado Resolver las siguientes ecuaciones: 5(x + 1) [1] = x + 5x + 9 + x + 8 [] [(x ) ] } = 1 [] x + 1 x + x + 5 7 [] 5x (x 8) = (x + ) [5] x + [] 5x

Más detalles

BANCO DE PROBLEMAS DÍA 1

BANCO DE PROBLEMAS DÍA 1 XXVIII OLIMPIADA COSTARRICENSE DE MATEMÁTICA UNA - UCR - TEC - UNED - MEP - MICITT BANCO DE PROBLEMAS DÍA 1 8 9 Lunes 14 de noviembre del 016 III Eliminatoria 016 Geometría 1. En la gura adjunta los tres

Más detalles

OLIMPÍADA POPULAR ESTUDIANTIL DE MATEMÁTICA TEMARIO DE ENSEÑANZA PREUNIVERSITARIA CURSO

OLIMPÍADA POPULAR ESTUDIANTIL DE MATEMÁTICA TEMARIO DE ENSEÑANZA PREUNIVERSITARIA CURSO OLIMPÍADA POPULAR ESTUDIANTIL DE MATEMÁTICA TEMARIO DE ENSEÑANZA PREUNIVERSITARIA CURSO 00 00 Los estudiantes de 0mo grado deben resolver los problemas al 4 Los estudiantes de no grado deben resolver los

Más detalles

Problemas resueltos correspondientes a la selectividad de Matemáticas II de septiembre de 2011, Andalucía

Problemas resueltos correspondientes a la selectividad de Matemáticas II de septiembre de 2011, Andalucía Problemas resueltos correspondientes a la selectividad de Matemáticas II de septiembre de 011, Andalucía Pedro González Ruiz septiembre de 011 1. Opción A Problema 1.1 Calcular la base y la altura del

Más detalles

Ejercicio n º 1 de la opción A de septiembre de Solución

Ejercicio n º 1 de la opción A de septiembre de Solución Ejercicio n º 1 de la opción A de septiembre de 2006 Sea f : R R la función definida por f(x) = x 2 - x. (a) [0 75 puntos] Estudia la derivabilidad de f. (b) [1 punto] Determina los intervalos de crecimiento

Más detalles

1. Halla los máximos, mínimos y puntos de inflexión de las siguientes funciones:

1. Halla los máximos, mínimos y puntos de inflexión de las siguientes funciones: APLICACIONES DE DERIVADAS 1. Halla los máximos, mínimos y puntos de inflexión de las siguientes funciones: a. 6 9 b. c. 2 d. 2 e. f. 1 2. Estudia los intervalos de crecimiento y decrecimiento de las siguientes

Más detalles

Seminario de problemas. Curso Hoja 7

Seminario de problemas. Curso Hoja 7 Seminario de problemas. Curso 015-16. Hoja 7 37. Determinar un número de cinco cifras tal que su cuadrado termine en las mismas cinco cifras colocadas en el mismo orden. La forma más simple de resolver

Más detalles

PROGRESIONES ARITMÉTICAS

PROGRESIONES ARITMÉTICAS PROGRESIONES ARITMÉTICAS 1. La suma de los tres primeros términos de una progresión aritmética es 12 y la razón 16. Calcula el primer término. : a 1 + a 2 + a 3 = 12 d = 16 a1 =? a2 = a1 + d a3 = a2 +

Más detalles

SEMEJANZA DE TRIÁNGULOS

SEMEJANZA DE TRIÁNGULOS IES ÉLAIOS Curso 01-14 AREA / MATERIA: MATEMÁTICAS CURSO: 4º E.S.O. Opción B. Ejercicios de repaso ª Evaluación SEMEJANZA DE TRIÁNGULOS 1. Se quiere construir un parterre con forma de triángulo rectángulo.

Más detalles

CÁLCULO DIFERENCIAL E INTEGRAL I EVALUACIÓN DE RECUPERACIÓN E0900

CÁLCULO DIFERENCIAL E INTEGRAL I EVALUACIÓN DE RECUPERACIÓN E0900 CÁLCULO DIFERENCIAL E INTEGRAL I EVALUACIÓN DE RECUPERACIÓN E0900 (1) La posición vertical de una pelota está dada por h(t) = 128 + 16t 16t 2 en donde t se mide en segundos y h(t) se mide en pies. Durante

Más detalles

Trabajo de Matemáticas AMPLIACIÓN 3º ESO

Trabajo de Matemáticas AMPLIACIÓN 3º ESO Trabajo de Matemáticas AMPLIACIÓN º ESO ACTIVIDADES DE AMPLIACIÓN TEMA : NÚMEROS FRACCIONARIOS O RACIONALES Problema nº Un grifo tarda en llenar un depósito horas y otro tarda en llenar el mismo depósito

Más detalles

CAPÍTULO 3. COORDENADAS CARTESIANAS EN EL PLANO. RECTAS Y CIRCUNFERENCIAS.

CAPÍTULO 3. COORDENADAS CARTESIANAS EN EL PLANO. RECTAS Y CIRCUNFERENCIAS. CAPÍTULO 3. COORDENADAS CARTESIANAS EN EL PLANO. RECTAS CIRCUNFERENCIAS. Ejercicios E1. Sean r la recta que pasa por los puntos. A(1, 2), B(3, 1), s la recta que pasa por el punto C(2, 2) y tiene pendiente

Más detalles

GEOMETRÍA. Septiembre 94. Determinar la ecuación del plano que pasa por el punto M (1, 0, [1,5 puntos]

GEOMETRÍA. Septiembre 94. Determinar la ecuación del plano que pasa por el punto M (1, 0, [1,5 puntos] Matemáticas II Pruebas de Acceso a la Universidad GEOMETRÍA Junio 94 1 Sin resolver el sistema, determina si la recta x y + 1 = 0 es exterior, secante ó tangente a la circunferencia (x 1) (y ) 1 Razónalo

Más detalles

C U R S O : MATEMÁTICA

C U R S O : MATEMÁTICA C U R S O : MATEMÁTICA GUÍA TEÓRICO PRÁCTICA Nº 27 UNIDAD: ÁLGEBRA Y FUNCIONES ECUACIÓN DE SEGUNDO GRADO Una ecuación de segundo grado es una ecuación susceptible de llevar a la forma ax 2 + bx + c = 0,

Más detalles

Aritmética. Ecuacion de la recta

Aritmética. Ecuacion de la recta Aritmética 6. El dígito de las unidades de un número de dos cifras excede en al de las decenas. Si el número se divide entre la suma de sus dígitos el cociente es 4 y el residuo es 6. Cuál es el producto

Más detalles

Departamento de Matemáticas

Departamento de Matemáticas Geometría analítica Matemáticas I 1.- Comprueba que el triángulo de vértices A(-1, 8), B(1, ) y C(4, ) es rectángulo y calcula su área. AB = (, 6) AC = (5, 5) BC = (,1) AB. AC = (, 6).(5, 5) = 10 + 0 =

Más detalles

COLEGIO SAN ALBERTO MAGNO. 1º BACHILLERATO C Matemáticas EXAMEN DE LA UNIDAD: POLINOMIOS Y FRACCIONES ALGEBRAICAS

COLEGIO SAN ALBERTO MAGNO. 1º BACHILLERATO C Matemáticas EXAMEN DE LA UNIDAD: POLINOMIOS Y FRACCIONES ALGEBRAICAS COLEGIO SAN ALBERTO MAGNO 1º BACHILLERATO COLEGIO SAN ALBERTO MAGNO 1º BACHILLERATO C Matemáticas EXAMEN DE LA UNIDAD: POLINOMIOS Y FRACCIONES ALGEBRAICAS 0 10 14 1. Factoriza los siguientes polinomios:

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2004 MATEMÁTICAS II TEMA 3: ESPACIO AFIN Y EUCLIDEO

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2004 MATEMÁTICAS II TEMA 3: ESPACIO AFIN Y EUCLIDEO PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 4 MATEMÁTICAS II TEMA : ESPACIO AFIN Y EUCLIDEO Junio, Ejercicio 4, Opción A Junio, Ejercicio 4, Opción B Reserva, Ejercicio 4, Opción A Reserva, Ejercicio 4,

Más detalles

Derivadas Parciales. Aplicaciones.

Derivadas Parciales. Aplicaciones. RELACIÓN DE PROBLEMAS FUNDAMENTOS MATEMÁTICOS DE LA INGENIERÍA Curso 2004/2005 Escuela Universitaria de Ingeniería Técnica Agrícola Departamento de Matemática Aplicada I Tema 3. Derivadas Parciales. Aplicaciones.

Más detalles

EJERCICIOS DE REPASO DE MATEMÁTICAS I PENDIENTES

EJERCICIOS DE REPASO DE MATEMÁTICAS I PENDIENTES EJERCICIOS DE REPASO DE MATEMÁTICAS I PENDIENTES 1 er PARCIAL 1. Obtén los valores reales que cumplen las siguientes condiciones: x+ x 3 5 x 1/ =1. Opera y expresa el resultado en notación científic (5,

Más detalles

1. Contesta: función sea creciente? 2. Representa la función: ( ) = Representa la siguiente función definida a trozos:

1. Contesta: función sea creciente? 2. Representa la función: ( ) = Representa la siguiente función definida a trozos: IES SAULO TORÓN Matemáticas 4º ESO RECUPERACIÓN 3ª Evaluación 1. Contesta: a) Pon un ejemplo de una función de proporcionalidad directa. b) En la función () = +, explica el significado de m. Cómo debe

Más detalles

ECUACIONES Y SISTEMAS

ECUACIONES Y SISTEMAS IES ÉLAIOS Curso 0- AREA / MATERIA: MATEMÁTICAS CURSO: º E.S.O. Opción B. Ejercicios de repaso ª Evaluación ECUACIONES Y SISTEMAS ) ) ) ) ) 6) 7) 8) x x 0 6x ( x + ) ( x ) + x 0 6 x + x x + x x ( x ) +

Más detalles

, hallar su dominio, los puntos de corte con los ejes y la pendiente de la recta x 2-4 tangente a la gráfica de la función en x = 1.

, hallar su dominio, los puntos de corte con los ejes y la pendiente de la recta x 2-4 tangente a la gráfica de la función en x = 1. . [04] [ET-A] El beneficio semanal (en miles de euros) que obtiene una fábrica por la producción de aceite viene dado por la función B(x) = -x +6x-8, donde x representa los hectolitros de aceite producidos

Más detalles

cesar Preguntas y respuestas 2016-II Examen de admisión CREEMOS EN LA EXIGENCIA Matemática ( ) = Pregunta N. o 1 Pregunta N. o 2 Pregunta N.

cesar Preguntas y respuestas 2016-II Examen de admisión CREEMOS EN LA EXIGENCIA Matemática ( ) = Pregunta N. o 1 Pregunta N. o 2 Pregunta N. Matemática Examen de admisión 016-II Preguntas y respuestas Pregunta N. o 1 Señale la alternativa que presenta la secuencia correcta después de determinar si la proposición es verdadera (V) o falsa (F).

Más detalles

HABILIDAD CUANTITATIVA

HABILIDAD CUANTITATIVA MATEMÁTICA] de enero de 0 HABILIDAD CUANTITATIVA Esta parte de la prueba consta de 5 preguntas (numeradas desde la a la 5) y se estima un máximo de 50 minutos para contestarlas todas. Si termina antes,

Más detalles

Matemáticas I Ejercicios resueltos. Tema 6: Números Complejos

Matemáticas I Ejercicios resueltos. Tema 6: Números Complejos Matemáticas I Ejercicios resueltos. Tema : Números Complejos 1. Calcula: ( + i)( i) (1 i)( i) c) i ( i)5i + i( 1 + i) (5 i) d) ( i)( + i) ( i) (+i)( i) (1 i)( i) i+i ( i i ) +i ( 1 5i) +1+i+5i 5 + i +

Más detalles

Concurso Nacional de Matemáticas Pierre Fermat Edición 2009 Guía Problemario Nivel Medio Superior

Concurso Nacional de Matemáticas Pierre Fermat Edición 2009 Guía Problemario Nivel Medio Superior Concurso Nacional de Matemáticas Pierre Fermat Edición 2009 Guía Problemario Nivel Medio Superior Problema 1 El número 29209200920009200009... tiene 2009 dígitos, Qué dígito está en el lugar de las unidades?

Más detalles

Derivadas e integrales

Derivadas e integrales Derivadas e integrales Álvarez S., Caballero M.V. y Sánchez M a M salvarez@um.es, m.victori@um.es, marvega@um.es ÍNDICE Matemáticas Cero Índice. Definiciones 3. Herramientas 4.. Reglas de derivación.......................

Más detalles

BÁSICOS DE GEOMETRÍA: Solución a los Ejercicios Propuestos

BÁSICOS DE GEOMETRÍA: Solución a los Ejercicios Propuestos CONCEPTOS BÁSICOS DE GEOMETRÍA: Solución a los Ejercicios Propuestos Tutor Carmen Aleisy Rodríguez Junio de 009 Solución a los Ejercicios propuestos 1. El grafico muestra las rectas paralelas m y n y la

Más detalles

SUBPRUEBA DE CONOCIMIENTOS DE MATEMÁTICA

SUBPRUEBA DE CONOCIMIENTOS DE MATEMÁTICA 1. Si a, b c son números reales tales que a < b < c < 0, entonces la única proposición verdadera, de las dadas a continuación, es: ab + cb > a ac > bc a + b > 0 a > c b. La única proposición verdadera,

Más detalles

GEOMETRÍA. que pasa por el punto P y es paralelo a π. (0,9 puntos) b) Determinar la ecuación del plano π

GEOMETRÍA. que pasa por el punto P y es paralelo a π. (0,9 puntos) b) Determinar la ecuación del plano π GEOMETRÍA 1.- Se considera la recta r : ( x, y, z) = ( t + 1, t,3 t), el plano π: x y z = 0y el punto P (1,1,1). Se pide: a) Determinar la ecuación del plano π 1 que pasa por el punto P y es paralelo a

Más detalles

1.- Efectúa las siguientes operaciones con cantidades expresadas en notación científica. Expresa el resultado también en notación científica:

1.- Efectúa las siguientes operaciones con cantidades expresadas en notación científica. Expresa el resultado también en notación científica: Pàgina de 7.- Efectúa las siguientes operaciones con cantidades epresadas en notación científica. Epresa el resultado también en notación científica: a) (9. 0 )(5. 0 ) (,5. 0 ) b) (,6. 0 )(5. 0 ) (4. 0

Más detalles

Problemas de fases nacionales e internacionales

Problemas de fases nacionales e internacionales Problemas de fases nacionales e internacionales 1.- (China 1993). Dado el paralelogramo ABCD, se consideran dos puntos E, F sobre la diagonal AC e interiores al paralelogramo. Demostrar que si existe una

Más detalles

EVALUACION: 1ª CURSO: 1º B.C.T. FECHA: 8/11/13 EXAMEN: 1º. 1) Simplifica todo lo posible racionalizando los denominadores:

EVALUACION: 1ª CURSO: 1º B.C.T. FECHA: 8/11/13 EXAMEN: 1º. 1) Simplifica todo lo posible racionalizando los denominadores: EVALUACION: 1ª CURSO: 1º B.C.T. FECHA: 8/11/13 EXAMEN: 1º 1) Simplifica todo lo posible racionalizando los denominadores: + 2) Simplifica todo lo posible la siguiente operación con fracciones algebraicas:

Más detalles

EJERCICIOS DE VERANO MATEMÁTICAS 3º ESO

EJERCICIOS DE VERANO MATEMÁTICAS 3º ESO EJERCICIOS DE VERANO MATEMÁTICAS 3º ESO Página 1 de 12 Entregar el día del examen de recuperación de matemáticas. Será condición indispensable para aprobar la asignatura. 1. Calcula: NUMEROS ENTEROS. FRACCIONES.

Más detalles

Selectividad Matemáticas II septiembre 2017, Andalucía (versión 2)

Selectividad Matemáticas II septiembre 2017, Andalucía (versión 2) Selectividad Matemáticas II septiembre 07, Andalucía versión ) Pedro González Ruiz 6 de septiembre de 07. Opción A Problema. Una imprenta recibe un encargo para realizar una tarjeta rectangular con las

Más detalles

SECRETARÍA ACADÉMICA AREA INGRESO

SECRETARÍA ACADÉMICA AREA INGRESO SECRETARÍA ACADÉMICA AREA INGRESO ECUACIONES Ecuación lineal y ecuación cuadrática - Setiembre de 010 - SECRETARÍA ACADÉMICA AREA INGRESO UNIVERSIDAD TECNOLÓGICA NACIONAL Zeballos 1341 000 Rosario - Argentina

Más detalles

Soluciones de los ejercicios del examen de Cálculo del 29 de junio de 2007 Primero de Ingeniería de Telecomunicación

Soluciones de los ejercicios del examen de Cálculo del 29 de junio de 2007 Primero de Ingeniería de Telecomunicación Soluciones de los ejercicios del examen de del 29 de junio de 27 Primero de Ingeniería de Telecomunicación Ejercicio a Justifica que la ecuación x 2 = x sen x+ cos x tiene exactamente dos soluciones reales.

Más detalles

Preparación del segundo examen de recuperación de MATEMÁTICAS I DE 2º BACHILLERATO Curso Segundo examen DEPARTAMENTO DE MATEMÁTICAS

Preparación del segundo examen de recuperación de MATEMÁTICAS I DE 2º BACHILLERATO Curso Segundo examen DEPARTAMENTO DE MATEMÁTICAS MATEMÁTICAS I DE º BACHILLERATO Curso 0-04 04 05 PENDIENTES MATEMÁTICAS I Bachillerato Tecnológico Segundo eamen DEPARTAMENTO DE MATEMÁTICAS MATEMÁTICAS I DE º BACHILLERATO Curso 0-04 GEOMETRÍA.- Dados

Más detalles

Opción de examen n o 1

Opción de examen n o 1 Septiembre-206 PAU Cantabria-Matemáticas II Opción de examen n o. a) Según el enunciado, se tiene: A B = C Ö è Ö è a b 2 c b c a = Ö è 0 Al igualar las matrices obtenidas se llega a: 2 + a + b = 2c + +

Más detalles

TORNEO DE PRIMAVERA CUENCA DEL PLATA PRIMER NIVEL Primera Prueba

TORNEO DE PRIMAVERA CUENCA DEL PLATA PRIMER NIVEL Primera Prueba TORNEO DE PRIMAVERA 2012 CUENCA DEL PLATA PRIMER NIVEL Primera Prueba Lee con atención: 1- Es posible consultar libros o apuntes y usar calculadora. 2- Solamente se pueden usar los elementos propios. 3-

Más detalles

EJERCICIOS Y PROBLEMAS RESUELTOS

EJERCICIOS Y PROBLEMAS RESUELTOS Ecuaciones de Segundo Grado -- página 1 EJERCICIOS Y PROBLEMAS RESUELTOS Ejercicio 1: Indica si son ecuaciones de segundo grado las siguientes ecuaciones: a) 5 + 8 + b) + + ( )( + ) c) + 1 a) El primer

Más detalles

TEMA 9. TRIGONOMETRÍA

TEMA 9. TRIGONOMETRÍA TEMA 9. TRIGONOMETRÍA 1. LOS ÁNGULOS Y SU MEDIDA. La trigonometría es la parte de las matemáticas que se encarga de la medida de los lados y los ángulos de un triángulo. ÁNGULO Un ángulo en el plano es

Más detalles

RESPUESTAS. Examen UNI 2015 I. Matemática

RESPUESTAS. Examen UNI 2015 I.  Matemática RESPUESTAS Examen UNI 05 I Matemática Pregunta 0 Semanalmente, un trabajador ahorra cierta cantidad en soles, y durante 0 semanas ahorra las siguientes cantidades: 5 9 8 8 5 6 7 7 7 9 9 6 8 6 6 0 8 9 5

Más detalles

RESOLVER ECUACIONES DE PRIMER GRADO

RESOLVER ECUACIONES DE PRIMER GRADO RESOLVER ECUACIONES DE PRIMER GRADO OBJETIVO 1 Resolver una ecuación es hallar el valor de la incógnita que cumple la ecuación. Para resolver una ecuación de primer grado, transponemos términos, lo que

Más detalles

!!! " " # " "!!! $ $ $ % % & % % $ $ $!!! " " # " "!!! $ $ $ % % & % % $ $ $!!! " " # " "!!! $ $ $ % % & % % $ $ $!!! " " # " "!!!!!! " " # " "!!!

!!!   #  !!! $ $ $ % % & % % $ $ $!!!   #  !!! $ $ $ % % & % % $ $ $!!!   #  !!! $ $ $ % % & % % $ $ $!!!   #  !!!!!!   #  !!! UNIIDAD Nº º NÚMEEROSS REEALLEESS! Resuelve tú ( Pág "# ) Resuelve la ecuación : 9x + 8x 6 ; 9x + 8x 6 ; 9x 8x 8; 9x 8x 8x 8x 8 ; x - 8. Resuelve tú ( Pág "" ) Completa la resolución de 7x 6x + { pasar

Más detalles

4. Cuáles son los dos números?

4. Cuáles son los dos números? Problemas algebraicos 1 RESOLUCIÓN DE PROBLEMAS ALGEBRAICOS 1.- La razón de dos números es tres quintos y si aumentamos el denominador una unidad y disminuimos el numerador en unidades la nueva razón es

Más detalles

c) Calcular las asíntotas horizontales y verticales de f y representar de forma aproximada

c) Calcular las asíntotas horizontales y verticales de f y representar de forma aproximada Universidade de Vigo Departamento de Matemática Aplicada II ETSI Minas Cálculo I Curso 2011/2012 2 de julio de 2012 (75 p) 1) Se considera la función f : R R definida por f(x) = ex 2 e x + 1 a) Determinar

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2014 MATEMÁTICAS II TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2014 MATEMÁTICAS II TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 04 MATEMÁTICAS II TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio,

Más detalles

Matemáticas I. Temas 1, 2 y 3 Fecha: 03/11/16 Curso: 5ºB

Matemáticas I. Temas 1, 2 y 3 Fecha: 03/11/16 Curso: 5ºB Temas 1, y 3 Fecha: 03/11/16 Curso: 5ºB 1) Simplifica todo lo posible racionalizando los denominadores: (1,5 puntos) + 3 50 8 98 6 + 1 + 4 ) a) Simplifica todo lo posible la siguiente operación con fracciones

Más detalles

FUNCIONES Y FÓRMULAS TRIGONOMÉTRICAS

FUNCIONES Y FÓRMULAS TRIGONOMÉTRICAS FUNCIONES Y FÓRMULAS TRIGONOMÉTRICAS PARA EMPEZAR, REFLEXIONA Y RESUELVE 1. Aunque el método para resolver las siguientes preguntas se sistematiza en la página siguiente, puedes resolverlas ahora: a) Cuántos

Más detalles

TEMA 6 SEMEJANZA. APLICACIONES -

TEMA 6 SEMEJANZA. APLICACIONES - TEMA 6 SEMEJANZA. APLICACIONES - 1. SEMEJANZA: ESCALAS LECCIÓN I ESCALA: es el cociente entre cada longitud de reproducción (mapa, plano, maqueta) y la correspondiente longitud en la realidad. Es, por

Más detalles

IES Fco Ayala de Granada Junio específico de 2010 (Modelo 4) Solución Germán-Jesús Rubio Luna. Opción A

IES Fco Ayala de Granada Junio específico de 2010 (Modelo 4) Solución Germán-Jesús Rubio Luna. Opción A IES Fco Ayala de Granada Junio específico de 010 (Modelo 4) Germán-Jesús Rubio Luna Opción A Ejercicio 1 opción A, modelo 4 Junio Específico 010 [ 5 puntos] La hipotenusa de un triángulo rectángulo mide

Más detalles

ANÁLISIS DE FUNCIONES

ANÁLISIS DE FUNCIONES ANÁLISIS DE FUNCIONES.- Calcula f() de manera que f () = Ln( + ) y que f(0) = 0. (nota: Ln significa logaritmo neperiano). Universidad de Andalucía Se trata de resolver la integral que hemos de hacerlo

Más detalles

MATEMÁTICAS B 4º ESO

MATEMÁTICAS B 4º ESO MATEMÁTICAS B 4º ESO Las unidades trabajadas durante el curso han sido: UNIDAD 1: NÚMEROS REALES UNIDAD : POTENCIAS Y RADICALES UNIDAD : POLINOMIOS Y FRACCIONES ALGEBRAICAS UNIDAD 4: ECUACIONES E INECUACIONES

Más detalles

Soluciones oficiales de los problemas de la Final de la XXI Olimpiada Nacional de Matemática 2009

Soluciones oficiales de los problemas de la Final de la XXI Olimpiada Nacional de Matemática 2009 Soluciones oficiales de los problemas de la Final de la XXI Olimpiada Nacional de Matemática 009 Comisión Académica 1 Nivel Menor Problema 1. Considere un triángulo cuyos lados miden 1, r y r. Determine

Más detalles

ax + b (x 1)(x 4). c) (2.0 pto.) Sabiendo que f(0) = 2, escriba el desarrollo de Taylor de orden 3 para f en torno a x 0 = 0.

ax + b (x 1)(x 4). c) (2.0 pto.) Sabiendo que f(0) = 2, escriba el desarrollo de Taylor de orden 3 para f en torno a x 0 = 0. Pauta Control 1 MA1002 Cálculo Diferencial e Integral Fecha: 21 de Abril de 2017 Problema 1. Considere la función f : R \ {1, 4} R, tal que su derivada es f (x) = ax + b (x 1)(x 4). a) (1.0 ptos.) Sabiendo

Más detalles

GEOMETRÍA. (x 1) 2 +(y 2) 2 =1. Razónalo. x y + z = 2. :3x 3z +1= 0 es doble de la distancia al plano π 2. : x + y 1= 0. Razónalo.

GEOMETRÍA. (x 1) 2 +(y 2) 2 =1. Razónalo. x y + z = 2. :3x 3z +1= 0 es doble de la distancia al plano π 2. : x + y 1= 0. Razónalo. GEOMETRÍA 1. (Junio, 1994) Sin resolver el sistema, determina si la recta x +3y +1= 0 es exterior, secante o tangente a la circunferencia (x 1) +(y ) =1. Razónalo.. (Junio, 1994) Dadas las ecuaciones de

Más detalles

Universidad Carlos III de Madrid

Universidad Carlos III de Madrid Universidad Carlos III de Madrid Ejercicio 1 3 4 5 6 Total Puntos Departamento de Economía Examen Final de Matemáticas I 0 de Enero de 015 APELLIDOS: Duración del Examen: horas NOMBRE: DNI: Titulación:

Más detalles

Memorial Peter O Hallaran 2004 Problema 1 ( ) ( ) = y.

Memorial Peter O Hallaran 2004 Problema 1 ( ) ( ) = y. Memorial Peter O Hallaran 004 Problema 1 Hallar todos los números naturales m tales que ( + 1) m m 1!!5! ( m 1! ) =! Solución de Daniel Lasaosa Medarde, Pamplona, Navarra, España Denotaremos por x m al

Más detalles

Integral definida. dx es diferencial de x, e indica cuál es la variable de la función que se integra.

Integral definida. dx es diferencial de x, e indica cuál es la variable de la función que se integra. Integral definida Integral definida Dada una función f(x) y un intervalo [a,b], la integral definida es igual al área limitada entre la gráfica de f(x), el eje de abscisas, y las rectas verticales x =

Más detalles

MATE Dr. Pedro Vásquez UPRM. P. Vásquez (UPRM) Conferencia 1 / 15

MATE Dr. Pedro Vásquez UPRM. P. Vásquez (UPRM) Conferencia 1 / 15 Dr. Pedro Vásquez UPRM P. Vásquez (UPRM) Conferencia 1 / 15 Modelando con ecuaciones Guías para resolver problemas verbales 1 Identi car la(s) variable(s) 2 Transformar la parte verbal a símbolos matemáticos

Más detalles

Derivadas e integrales

Derivadas e integrales Derivadas e integrales Álvarez S., Caballero M.V. y Sánchez M a M salvarez@um.es, m.victori@um.es, marvega@um.es Índice 1. Definiciones 3 2. Herramientas 5 2.1. Reglas de derivación............................

Más detalles

EJERCICIOS DE MATEMÁTICAS I

EJERCICIOS DE MATEMÁTICAS I EJERCICIOS DE MATEMÁTICAS I NOTAS REPASAR TODAS LAS DEMOSTRACIONES DE LOS TEMAS, Y ESTE TRABAJO NO ES OBLIGATORIO.. Efectúa: a) 6 6 b) 5 6 50. Racionaliza:. Epresa en forma de una potencia única 5 6..

Más detalles

Matemáticas I - 1 o de Bachillerato Convocatoria Extraordinaria de Septiembre - 2 de septiembre de 2011

Matemáticas I - 1 o de Bachillerato Convocatoria Extraordinaria de Septiembre - 2 de septiembre de 2011 Matemáticas I - o de Bachillerato Convocatoria Extraordinaria de Septiembre - 2 de septiembre de 20. En el centro de un lago sale verticalmente hacia arriba un chorro de agua caliente (géiser) y queremos

Más detalles

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD Opción A Ejercicio 1.- [2 5 puntos] Entre todos los triángulos rectángulos de 5 metros de hipotenusa, determina los catetos del de área máxima. Ejercicio 2.- [2 5 puntos] Sea f : ( 2, + ) R la función

Más detalles

a + b 2 ab + a2 + b 2 Si aplicamos la desigualdad entre las medias aritmética y geométrica al miembro de la izquierda obtenemos 2 2ab + a2 + b =

a + b 2 ab + a2 + b 2 Si aplicamos la desigualdad entre las medias aritmética y geométrica al miembro de la izquierda obtenemos 2 2ab + a2 + b = Sesión 3 1. Sean a, b números positivos. Probar que a + b a + b ab +. Solución 1. La desigualdad equivale a ab + a +b a + b. Si aplicamos la desigualdad entre las medias aritmética y geométrica al miembro

Más detalles

EXAMEN DE MATRICES Y DETERMINANTES

EXAMEN DE MATRICES Y DETERMINANTES º BACHILLERATO EXAMEN DE MATRICES Y DETERMINANTES 8 7 m + Ejercicio. Considera las matrices A m (a) [,5 puntos] Determina, si existen, los valores de m para los que A I A (b) [ punto] Determina, si existen,

Más detalles

ANTES DE COMENZAR RECUERDA

ANTES DE COMENZAR RECUERDA ANTES DE COMENZAR RECUERDA 00 Determina cuáles de estos vectores son paralelos y cuáles son perpendiculares a v (, ). a) v ( 6, ) b) v (, ) c) v (, ) a) v v Los vectores son paralelos. b) v v 0 Los vectores

Más detalles

IES Los Cardones Curso PLAN DE REPASO SEPTIEMBRE 2017 CONTENIDOS:

IES Los Cardones Curso PLAN DE REPASO SEPTIEMBRE 2017 CONTENIDOS: IES Los Cardones Curso 016-017 º ESO Matemáticas Académicas SAA MATEMÁTICAS ACADÉMICAS º ESO IES LOS CARDONES 016-017 PLAN DE REPASO SEPTIEMBRE 017 CONTENIDOS: - VECTORES Y RECTAS. - SEMEJANZA. - TRIGONOMETRÍA.

Más detalles

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD Opción A Ejercicio 1.- Sea f : R R definida por f(x) = x 3 +ax 2 +bx+c. a) [1 75 puntos] Halla a,b y c para que la gráfica de f tenga un punto de inflexión de abscisa x = 1 2 y que la recta tangente en

Más detalles

Apellidos: Nombre: TEMA 6 - CÓNICAS - ()* & TEMA 7 - COMPLEJOS

Apellidos: Nombre: TEMA 6 - CÓNICAS - ()* & TEMA 7 - COMPLEJOS EXAMEN DE MATEMÁTICAS 3ª EVALUACIÓN Apellidos: Nombre: Curso: 1º Grupo: C Día: 4 - V- 15 CURSO 2015-16 TEMA 6 - CÓNICAS 1. Demuestra que la recta r de ecuación 3x+4y- 25 = 0 es tangente a la circunferencia

Más detalles

CONVOCATORIA NACIONAL I 2009 ÁLGEBRA, TRIGONOMETRÍA Y GEOMETRIA ANALITICA TEMA B CUADERNILLO DE PREGUNTAS

CONVOCATORIA NACIONAL I 2009 ÁLGEBRA, TRIGONOMETRÍA Y GEOMETRIA ANALITICA TEMA B CUADERNILLO DE PREGUNTAS CUADERNILLO DE PREGUNTAS PREGUNTAS DE SELECCIÓN MÚLTIPLE CON ÚNICA RESPUESTA A continuación, usted encontrará preguntas que se desarrollan en torno a un enunciado, problema o contexto, frente al cual,

Más detalles

IES Fco Ayala de Granada Septiembre de 2011 (Septiembre Modelo 2) Solución Germán-Jesús Rubio Luna

IES Fco Ayala de Granada Septiembre de 2011 (Septiembre Modelo 2) Solución Germán-Jesús Rubio Luna IES Fco Ayala de Granada Septiembre de 0 (Septiembre Modelo ) Germán-Jesús Rubio Luna UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD CURSO 00-0. MATEMÁTICAS II Opción A Ejercicio opción A,

Más detalles

(b) Monotonía, máximos y mínimos locales y absolutos.

(b) Monotonía, máximos y mínimos locales y absolutos. CÁLCULO DIFERENCIAL E INTEGRAL I TERCERA EVALUACIÓN PARCIAL E1400 1) Sea fx) = x 3 x 3 Encontrar: a) Dominio, raíces y paridad b) Monotonía, máximos y mínimos locales y absolutos, y el rango c) Concavidad

Más detalles

Un i d a d 5. d i fe r e n C i a L es d e o r d e n s U pe r i o r. Objetivos. Al inalizar la unidad, el alumno:

Un i d a d 5. d i fe r e n C i a L es d e o r d e n s U pe r i o r. Objetivos. Al inalizar la unidad, el alumno: Un i d a d 5 má x i m o s, mínimos y d i fe r e n C i a L es d e o r d e n s U pe r i o r Objetivos Al inalizar la unidad, el alumno: Identificará los puntos críticos, máximos y mínimos absolutos y relativos

Más detalles

IES FONTEXERÍA MUROS. 18-X-2013 Nombre y apellidos:...

IES FONTEXERÍA MUROS. 18-X-2013 Nombre y apellidos:... IES FONTEXERÍA MUROS MATEMÁTICAS 2º E.S.O-A (Desdoble 1) 1º Examen (1ª Evaluación) 18-X-201 Nombre y apellidos:... 1. Contesta estas cuestiones: a) Qué es un monomio?. Un monomio es una expresión algebraica

Más detalles

TRIGONOMETRÍA. CONVERSIÓN DE UN SISTEMA A OTRO Tomando como base la equivalencia de un sistema a otro, podemos establecer la siguiente fórmula:

TRIGONOMETRÍA. CONVERSIÓN DE UN SISTEMA A OTRO Tomando como base la equivalencia de un sistema a otro, podemos establecer la siguiente fórmula: Cursos ALBERT EINSTEIN ONLINE Calle Madrid Esquina c/ Av La Trinidad LAS MERCEDES 9937172 9932305! www. a-einstein.com TRIGONOMETRÍA SISTEMAS DE MEDIDAS DE ÁNGULOS SISTEMA SEXAGESIMAL: Es el que considera

Más detalles

Boletín II. Cálculo diferencial de funciones de una variable

Boletín II. Cálculo diferencial de funciones de una variable CÁLCULO Boletín II. Cálculo diferencial de funciones de una variable Ejercicios básicos 1. Sea f la función dada por 5x 2. a) Utiliza la definición de derivada para demostrar que f (x) = 10x. b) Calcula

Más detalles

t si t 2. x 2 + xy + y 3 = 1 8.

t si t 2. x 2 + xy + y 3 = 1 8. CÁLCULO DIFERENCIAL E INTEGRAL I EVALUACIÓN DE RECUPERACIÓN E000 () Una pelota se deja caer desde un edificio. La posición de la pelota en cualquier instante t (medido en segundos) está dada por s(t).5

Más detalles

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD CURSO

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD CURSO Opción A Ejercicio 1.- Sea la función f : (0, + ) R definida por f(x) = 1 +ln(x) donde ln denota la función x logaritmo neperiano. (a) [1 75 puntos] Halla los [ extremos ] absolutos de f (abscisas donde

Más detalles

SESIÓN 2 Splines e integración numérica

SESIÓN 2 Splines e integración numérica SESIÓN Splines e integración numérica ) Sea f x = x 4 para x [,] y sea s: [,] R el spline cúbico que aproxima a f definido a partir de los puntos de abscisas, y. Razona cual de las siguientes expresiones

Más detalles

FUNCIONES PRÁCTICA N 2

FUNCIONES PRÁCTICA N 2 Capitulo II FUNCIONES PRÁCTICA N. En cada uno de los siguientes casos dar la ley de la función descripta: a) El área de un rectángulo es de 0 cm². Epresar el perímetro del mismo en función de la longitud

Más detalles

Problemas propuestos en el XXXIV Concurso Puig Adam

Problemas propuestos en el XXXIV Concurso Puig Adam Problemas propuestos en el XXXIV oncurso Puig dam Problema 1 (7 puntos) NIVEL I (3º de E.S.O.) Primera parte (1 hora 30 minutos) Juan efectúa las mil divisiones enteras siguientes: 2016 entre 1, 2016 entre

Más detalles

Soluciones a los ejercicios del examen final

Soluciones a los ejercicios del examen final Universidade de Vigo Departamento de Matemática Aplicada II E.T.S.I. Minas Cálculo I Curso 201/14 20 de diciembre de 201 Soluciones a los ejercicios del examen final 1) Se considera la función f : R R

Más detalles

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL EXAMEN DE UBICACIÓN DE MATEMÁTICAS CARRERAS DE INGENIERÍAS

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL EXAMEN DE UBICACIÓN DE MATEMÁTICAS CARRERAS DE INGENIERÍAS ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL EXAMEN DE UBICACIÓN DE MATEMÁTICAS CARRERAS DE INGENIERÍAS 0-0 Guaaquil, 7 de diciembre de 00 NOMBRE: No. DE CÉDULA DE IDENTIDAD: FIRMA: INSTRUCCIONES Escriba sus

Más detalles