V. Modelo desarrollado de transferencia de materia

Tamaño: px
Comenzar la demostración a partir de la página:

Download "V. Modelo desarrollado de transferencia de materia"

Transcripción

1 26 V. Modelo desarrollado de transferencia de materia Mediante la teoría cinética elemental de los gases pueden explicarse los fenómenos de transferencia, y sus acoplamientos, así como llegar a estimaciones de las tres propiedades del transporte. La teoría cinética elemental se construye sobre las siguientes hipótesis simplificadoras: - Las moléculas de cada especie son esferas rígidas de masa m i y diámetro d i. - No existen fuerzas de atracción y repulsión entre las moléculas. - El volumen ocupado por las moléculas es despreciable frente al volumen total. - Las colisiones entre moléculas son perfectamente elásticas, es decir, siguen las leyes de conservación de cantidad de movimiento y de energía. - Las moléculas de cualquier especie i se mueven en todas direcciones al azar con la misma velocidad. La transferencia de un componente entre una superficie interfacial y un fluido en movimiento se denomina transferencia convectiva de materia. La superficie interfacial puede ser la superficie exterior de un sólido en contacto con una corriente de líquido o gas. La transferencia convectiva de materia es un fenómeno que se produce en todas las operaciones básicas de transferencia de materia tales como secado, lixiviación, destilación, absorción, etc. En general, estas operaciones suelen ser en régimen turbulento, no obstante, adyacente a la interfase existe una subcapa laminar extremadamente fina en la que el transporte convectivo de materia es por difusión molecular. Fuera de esta capa, es la difusión turbulenta la que juega el papel predominante. El flujo difusivo depende del gradiente de concentración en la interfase, cuya determinación es compleja y por tanto, por simplificación se utiliza la siguiente ecuación: donde: - coeficiente de transferencia de materia. - concentración en la interfase del componente que se transfiere. - concentración media en el seno de la fase fluida. Por otro lado, es conveniente señalar que en la mayoría de los casos reales, el término que aparece en la ecuación del flujo en la interfase, Ec. 1, es despreciable frente al término difusivo, de forma que la ecuación de transporte de materia queda:

2 27 V.1.1 Cálculo del coeficiente de transferencia de materia. Utilizando la ley de Fick y la definición de coeficiente se puede escribir: Igualmente se puede definir el coeficiente de transferencia respecto de una fuerza impulsora másica, Estos coeficientes son iguales cuando las velocidades medias molares y másicas también lo son, ya que en este caso. Este caso se produce cuando todas las especies involucradas tienen la misma masa molecular. Estos dos coeficientes también son prácticamente iguales cuando existe un componente mayoritario puesto que la masa molecular media de la mezcla es prácticamente igual a la del componente mayoritario. Por otro lado, el flujo de A debido al movimiento global de la mezcla es despreciable frente al flujo difusivo debido al gradiente de concentración, y en consecuencia, se puede reescribir la ecuación como: La evaluación del coeficiente de transporte convectivo de materia se puede abordar de diversas formas: - Análisis exacto de la capa límite. - Análisis aproximado de la capa límite. - Utilizando la analogía existente entre los tres fenómenos de transporte. - Experimentalmente haciendo uso del análisis dimensional. En este caso, el cálculo se realiza a partir del análisis aproximado de la capa límite, debido a que el problema es en régimen turbulento y por tanto no es posible realizar un análisis riguroso de la transferencia de materia en la capa límite. La carencia de un modelo de turbulencia suficientemente bueno obliga a realizar un estudio aproximado de la capa límite como el desarrollado por von Kármán.

3 28 V Análisis de von Kármán Si se considera el volumen de control de la Figura 14, el balance molar de A en régimen permanente es: donde: - es el caudal molar por unidad de profundidad de capa límite. - es el caudal molar por unidad de borde de capa límite. Despreciando el flujo difusivo en la dirección x del movimiento del fluido, el caudal molar de A en esa dirección es, Por otro lado, asumiendo interfase es, nula en la interfase, la velocidad molar de transferencia de A en la Figura 14. Análisis aproximado de Von Kármán. En el borde de la capa límite el gradiente de concentración de A en dirección z es nulo. Por tanto, siendo el caudal molar de fluido por unidad de profundidad a través de una longitud Δx de borde de la capa límite. Este caudal puede evaluarse planteando el balance molar total en el volumen de control considerado,

4 29 donde, De aquí resulta, Sustituyendo todos los términos del balance molar de componentes A, Ec. 14, por sus respectivas expresiones, Ec.9, Ec.1, Ec.11 y Ec.13, se obtiene finalmente: Para resolver esta ecuación es preciso conocer los perfiles de concentración de y velocidad, así como el espesor de la capa límite. En régimen turbulento estos datos no son conocidos, por tanto: - Aplicando el análisis de von Kármán a la capa límite fluidodinámica. - Asumiendo el perfil 1/7 de velocidad. - Considerando Sc=1, para los gases la relación de difusividades es la unidad. Se obtiene: El número de Sherwood sobre una superficie plana es el siguiente: V Cálculo de la difusividad binaria Para gases polares, las fuerzas de atracción y repulsión entre moléculas dependen de la orientación de estas por estar cargadas. Estas fuerzas deben ser modeladas a través de un potencial que recoja la influencia de este efecto adicional. Con frecuencia se suele utilizar el potencial de Stockmayer donde se tiene en cuenta las interacciones dipolo-dipolo y el cálculo de σ, ε y Ω D se corrige respecto al valor que da el potencial de Leonnar-Jones mediante un factor que depende del momento dipolar de las moléculas. En algunas ocasiones resultan difíciles de encontrar los valores de todos los parámetros y es en este caso cuando se introduce la ecuación de Fuller, la cual es mucho más sencilla aunque su precisión es algo menor. Esta ecuación puede ser utilizada para mezclas de gases no polares y polar-no polar. El valor que se obtiene de esta ecuación se encuentra en m 2 /s.

5 3 Donde: - T en Kelvin. - p en atmósferas. - Σv i es el volumen de difusión. Estos datos se pueden obtener de la siguientetabla 3. Tabla 3.Volúmenes de difusión para distintas sustancias. Volúmenes atómicos de difusión C 16,5 (Cl) 19,5 H 1,98 (S) 17, O 5,48 Anillo aromático -2,2 (N) 5,69 Anillo heterocíclico -2,2 Volúmenes de difusión H 2 7,7 CO 18,9 D 2 6,7 CO 2 26,9 He 2,88 N 2 O 35,9 N 2 17,9 NH 3 14,9 O 2 16,6 H 2 O 12,7 Air 2,1 (CCl 2 F 2 ) 114,8 Ar 16,1 (SF 6 ) 69,7 Kr 22,8 (Cl 2 ) 37,7 (Xe) 37,9 (Br 2 ) 67,2 Ne 5,59 (SO 2 ) 41,1 La ecuación de Fuller muestra quela difusividad es proporcional a T 1,75 e inversamente proporcional a la presión. V.1.2 Cálculo de la concentración de A. Para determinar la concentración del componente A tanto en la interfase como en el seno del fluido, se necesita conocer la fracción másica del componente A en cada caso, la densidad del fluido a la temperatura correspondiente y el peso molecular del componente A. Conocidos estos valores se pueden determinar las concentraciones con la siguiente ecuación: donde: - es la fracción másica del componente A. - es la densidad del fluido a la temperatura de la interfase. - es el peso molecular del componente A.

6 31 Para determinar la fracción másica del componente A a partir de la humedad relativa se realiza un polinomio que las relaciones con los datos tomados del diagrama psicrométrico. Figura 15. Diagrama Psicrométrico. Con el diagrama psicrométrico, las temperaturas y la humedad relativa podemos determinar las humedades absolutas, es decir, la fracción másica de agua para varios puntos y de esta forma calcular el polinomio. Tabla 4. Concentración másica de la humedad relativa del 1%. Concentración másica para una humedad relativa del 1% Temperatura interfase (K) Concentración másica (kg/kg) 283, , , ,26 33, , ,4884 A partir de los datos de la tabla anterior se tiene el polinomio para una humedad relativa del 1%: Tabla 5. Concentración másica para humedad relativa del 5%. Concentración másica para una humedad relativa del 5% Temperatura seno del fluido (K) Concentración másica (kg/kg) 283,379

7 32 288, , ,987 33,133 38, ,235 A partir de los datos de la tabla anterior se tiene el polinomio para una humedad relativa del 5%: Con las ecuaciones anteriores se puede determinar la humedad absoluta para dicho rango de temperaturas cuando las humedades relativas son del 5% y del 1%. V.1.3 Análisis paramétrico de la transferencia de materia. Con los datos anteriores se puede representar la variación de transferencia de materia con la temperatura de la interfase, la temperatura del seno del fluido y con la velocidad. La dependencia con este último parámetro aparece en el número de Reynolds. A continuación se muestran las gráficas con dichas variaciones, por un lado la variación de la transferencia de materia con la temperatura de la interfase y la velocidad y por otro la variación de la transferencia de materia con la temperatura del seno del fluido y la velocidad. En primer lugar, se muestran las gráficas para la temperatura del seno del fluido constante.

8 n A (kg/(m 2 s)) n A (kg/(m 2 s)) n A (kg/(m 2 s)) Grupo Termotecnia. Escuela Superior de Ingenieros 33 1,E-3 8,E-4 6,E-4 4,E-4 2,E-4 T interfase=283 K T interfase=293 K T interfase=33 K T interfase=313 K,E+ Figura 16. Transferencia de materia para temperatura del fluido igual a 288 K. 8,E-4 7,E-4 6,E-4 5,E-4 4,E-4 3,E-4 2,E-4 1,E-4,E+ T interfase=283 K T interfase=293 K T interfase=33 K T interfase=313 K Figura 17. Transferencia de materia para temperatura del fluido igual a 293 K.,7,6,5,4,3,2,1 -,1 T interfase=283 K T interfase=293 K T interfase=33 K T interfase=313 K Figura 18. Transferencia de materia para temperatura del fluido igual a 298 K.

9 n A (kg/(m 2 s)) n A (kg/(m 2 s)) Grupo Termotecnia. Escuela Superior de Ingenieros 34,6,5,4,3,2,1 -,1 -,2 T interfase=283 K T interfase=293 K T interfase=33 K T interfase=313 K Figura 19. Transferencia de materia para temperatura del fluido igual a 33 K.,5,4,3,2,1 -,1 -,2 T interfase=283 K T interfase=293 K T interfase=33 K T interfase=313 K Figura 2. Transferencia de materia para temperatura del fluido igual a 38 K. En las gráficas anteriores se observa que al aumentar la velocidad a la que el fluido barre la interfase, superficie del lodo, aumenta la transferencia de materia. Por otro lado es importante destacar que para los casos en los que la diferencia entre la temperatura del fluido y la temperatura de la interfase es grande la transferencia de materia se hace negativa, es decir, se produce en sentido contrario a lo que se requiere en el secado, el lodo absorbe agua del ambiente. Por tanto para un buen secado se necesita que la diferencia de temperaturas entre el ambiente y la interfase sea pequeña o que la interfase se encuentre a mayor temperatura que el ambiente. Este segundo caso es el más probable, ya que al tratarse de un secadero solar la radiación hace que aumente la temperatura de la superficie del lodo. En segundo lugar, se muestran las gráficas para la temperatura de la interfase constante.

10 n A (kg/(m 2 s)) n A (kg/(m 2 s)) n A (kg/(m 2 s)) Grupo Termotecnia. Escuela Superior de Ingenieros 35 1,E-4 5,E-5,E+ -5,E-5-1,E-4 T fluido=288 K T fluido=293 K T fluido=298 K T fluido=33 K T fluido=38 K -1,5E-4 Figura 21. Transferencia de materia para temperatura de la interfase igual a 283 K.,2,15,1,5 -,5 T fluido=288 K T fluido=293 K T fluido=298 K T fluido=33 K T fluido=38 K Figura 22. Transferencia de materia para temperatura de la interfase igual a 293 K.,5,4,3,2,1 T fluido=288 K T fluido=293 K T fluido=298 K T fluido=33 K T fluido=38 K Figura 23. Transferencia de materia para temperatura de la interfase igual a 33 K.

11 n A (kg/(m 2 s)) Grupo Termotecnia. Escuela Superior de Ingenieros 36,1,8,6,4,2 T fluido=288 K T fluido=293 K T fluido=298 K T fluido=33 K T fluido=38 K Figura 24. Transferencia de materia para temperatura de la interfase igual a 313 K. En este caso se observa que la dependencia con la temperatura del fluido es menor que la dependencia de la temperatura de la interfase.

TEMA 5: CINÉTICA HETEROGÉNEA. TRANSFERENCIA DE MATERIA CQA-5/1

TEMA 5: CINÉTICA HETEROGÉNEA. TRANSFERENCIA DE MATERIA CQA-5/1 TEMA 5: CINÉTICA HETEROGÉNEA. TRANSFERENCIA DE MATERIA CQA-5/1 CARACTERÍSTICAS DE LAS REACCIONES HETEROGÉNEAS! Se requiere más de una fase para que la reacción transcurra del modo que lo hace.! Reacción

Más detalles

N = γ net (N / V) (u av / 4) (2πrl)

N = γ net (N / V) (u av / 4) (2πrl) Anexo III III- Teoría de los reactores tubulares de flujo Según la teoría cinética molecular, el número de colisiones por segundo, J s, de moléculas en fase gaseosa sobre una superficie de área A s se

Más detalles

LABORATORIO DE OPERACIONES UNITARIAS I

LABORATORIO DE OPERACIONES UNITARIAS I UNIVERSIDD DEL ZULI FCULTD DE INGENIERÍ ESCUEL DE INGENIERÍ QUÍMIC DEPRTMENTO DE INGENIERÍ QUÍMIC BÁSIC LORTORIO DE OPERCIONES UNITRIS I DIFUSION BINRI EN FSE GSEOS Profesora: Marianela Fernández Objetivo

Más detalles

1.- DATOS DE LA ASIGNATURA. Nombre de la asignatura: Fenómenos de Transporte II. Carrera: Ingeniería Química. Clave de la asignatura: QUM 0509

1.- DATOS DE LA ASIGNATURA. Nombre de la asignatura: Fenómenos de Transporte II. Carrera: Ingeniería Química. Clave de la asignatura: QUM 0509 1.- DATOS DE LA ASIGNATURA Nombre de la asignatura: Carrera: Clave de la asignatura: Horas teoría-horas práctica-créditos: Fenómenos de Transporte II Ingeniería Química QUM 0509 3 2 8 2.- HISTORIA DEL

Más detalles

NOMENCLATURA PARA EL MODELO CINETICO. Símbolo Unidades Definición A

NOMENCLATURA PARA EL MODELO CINETICO. Símbolo Unidades Definición A NOMENCLATURA PARA EL MODELO CINETICO Símbolo Unidades Definición A Nomenclatura utilizada por simplicidad para representar al oxígeno B Nomenclatura utilizada por simplicidad para representar a la mata

Más detalles

convección (4.1) 4.1. fundamentos de la convección Planteamiento de un problema de convección

convección (4.1) 4.1. fundamentos de la convección Planteamiento de un problema de convección convección El modo de transferencia de calor por convección se compone de dos mecanismos de transporte, que son, la transferencia de energía debido al movimiento aleatorio de las moléculas (difusión térmica)

Más detalles

Introducción y Conceptos.

Introducción y Conceptos. Introducción y Conceptos. Los equipos de transferencia de calor tales como intercambiadores de calor, las calderas, los condensadores, los radiadores, los calentadores, los hornos, los refrigeradores,

Más detalles

Transferencia de materia Se produce en mezclas con diferentes concentraciones locales La materia se transporta debido a una diferencia o gradiente de

Transferencia de materia Se produce en mezclas con diferentes concentraciones locales La materia se transporta debido a una diferencia o gradiente de Transferencia de materia Se produce en mezclas con diferentes concentraciones locales La materia se transporta debido a una diferencia o gradiente de concentración El transporte ocurre desde la región

Más detalles

TEMA 7: CINÉTICA HETEROGÉNEA FLUIDO - SÓLIDO CQA-7/1

TEMA 7: CINÉTICA HETEROGÉNEA FLUIDO - SÓLIDO CQA-7/1 TEMA 7: CINÉTICA HETEROGÉNEA FLUIDO - SÓLIDO CQA-7/1 PLANTEAMIENTO DEL MODELO CINÉTICO Reacciones heterogéneas fluido-sólido: numerosas y de gran importancia industrial: Se ponen en contacto un gas o un

Más detalles

Transferencia de Calor Cap. 1. Juan Manuel Rodriguez Prieto I.M., M.Sc., Ph.D.

Transferencia de Calor Cap. 1. Juan Manuel Rodriguez Prieto I.M., M.Sc., Ph.D. Transferencia de Calor Cap. 1 Juan Manuel Rodriguez Prieto I.M., M.Sc., Ph.D. Conceptos básicos Termodinámica: estudia la cantidad de transferencia de calor medida que un sistema pasa por un proceso de

Más detalles

TEMA 8: CINÉTICA HETEROGÉNEA CATALÍTICA CQA-8/1

TEMA 8: CINÉTICA HETEROGÉNEA CATALÍTICA CQA-8/1 TEMA 8: CINÉTICA HETEROGÉNEA CATALÍTICA CQA-8/1 CARACTERÍSTICAS DE LAS REACCIONES HETEROGÉNEAS CATALÍTICAS FLUIDO-SÓLIDO Velocidad afectada por la presencia de sustancias ( catalizadores ): modifican la

Más detalles

DETERMINACION DE DIFUSIVIDAD MASICA

DETERMINACION DE DIFUSIVIDAD MASICA DETERMINCION DE DIFUSIVIDD MSIC OBJETIVOS OBJETIVO GENERL Determinar la difusividad másica del vapor de una sustancia pura (Metanol en un gas (ire. OBJETIVOS ESPECÍFICOS Determinar la difusividad másica

Más detalles

CAPÍTULO 2 CONVECCION NATURAL SOBRE PLACAS HORIZONTALES. La transferencia de calor es la ciencia que busca predecir la transferencia de energía

CAPÍTULO 2 CONVECCION NATURAL SOBRE PLACAS HORIZONTALES. La transferencia de calor es la ciencia que busca predecir la transferencia de energía CAPÍTULO 2 CONVECCION NATURAL SOBRE PLACAS HORIZONTALES 2.1 Transferencia de Calor La transferencia de calor es la ciencia que busca predecir la transferencia de energía que puede tener lugar entre dos

Más detalles

TEMA 4: BALANCES DE ENERGÍA. IngQui-4 [1]

TEMA 4: BALANCES DE ENERGÍA. IngQui-4 [1] TEMA 4: BALANCES DE ENERGÍA IngQui-4 [1] 4.1 Conceptos básicos Aplicación de la ecuación de conservación genérica: [4.1] Ecuación de conservación de la energía total, macroscópica: [4.2] IngQui-4 [2] Bases

Más detalles

VOLUMENES ATOMICO Y MOLECULAR EN EL PUNTO DE EBULLICION NORMAL

VOLUMENES ATOMICO Y MOLECULAR EN EL PUNTO DE EBULLICION NORMAL VOLUMENES ATOMICO Y MOLECULAR EN EL PUNTO DE EBULLICION NORMAL Volumen atómico x 10 3 ( m 3 / kg átomo ) Volumen molecular x 10 3 ( m 3 / kg mol ) Bromo 27,0 Aire 29,9 Carbono 14,8 Br 2 53,2 Cloro 24,6

Más detalles

Resumen Cap. 7 - Felder Mercedes Beltramo 2ºC 2015 Resumen Cap. 7

Resumen Cap. 7 - Felder Mercedes Beltramo 2ºC 2015 Resumen Cap. 7 Resumen Cap. 7 7.1 Formas de energía: La primera ley de la termodinámica La energía total de un sistema consta de: Energía cinética: debida al movimiento traslacional del sistema como un todo en relación

Más detalles

Tema 12. Gases. Química General e Inorgánica A ESTADOS DE AGREGACION DE LA MATERIA

Tema 12. Gases. Química General e Inorgánica A ESTADOS DE AGREGACION DE LA MATERIA Tema 12 Gases Química General e Inorgánica A ESTADOS DE AGREGACION DE LA MATERIA 2.1 2.1 Variables que determinan el estado de agregación Tipo de material o materia Temperatura Presión 2.2 Elementos que

Más detalles

Resumen Cap. 8 - Felder Mercedes Beltramo 2 C 2015 Resumen Cap. 8

Resumen Cap. 8 - Felder Mercedes Beltramo 2 C 2015 Resumen Cap. 8 Resumen Cap. 8 8.1 - Elementos de los cálculos de balance de energía 8.1a - Estados de referencia: repaso Es imposible conocer los valores absolutos de U y H para un especie en cierto estado. U (kj/mol)

Más detalles

Dinámica de los Fluídos

Dinámica de los Fluídos Dinámica de los Fluídos Flujos Fluídos Sustancias que no transmiten esfuerzos Se deforman cuando se les aplica una fuerza Incluye, agua y gases Fuerzas actuan en todo el fluido Propiedades de los Fluidos

Más detalles

CAPITULO VII DIFUSIVIDAD Y EL MECANISMO DE TRANSPORTE DE MASA

CAPITULO VII DIFUSIVIDAD Y EL MECANISMO DE TRANSPORTE DE MASA CPITULO VII DIFUSIVIDD Y EL MECNISMO DE TRNSPORTE DE MS 7.1 Difusión de concentración de masa La transferencia de masa. Diferencia en la concentración de alguna especie o componente químico en una mezcla.

Más detalles

Respuesta: a) La fracción molar de NaCl es 0,072 b) La concentración másica volumétrica de NaCl es 0,231 g/cc

Respuesta: a) La fracción molar de NaCl es 0,072 b) La concentración másica volumétrica de NaCl es 0,231 g/cc Ejercicio 1: La densidad a 4 ºC de una solución acuosa de NaCl al 20% en peso es 1,155 g/cc a) Calcule la fracción molar de NaCl b) Calcule la concentración másica volumétrica de NaCl La masa molecular

Más detalles

FOURIER Y NEWTON). LEY DE FICK PARA DIFUSIÓN

FOURIER Y NEWTON). LEY DE FICK PARA DIFUSIÓN INTRODUCCIÓN. SEMEJANZA ENTRE TRANSFERENCIA DE MASA, CALOR Y MOMENTO (LEYES DE FICK, FOURIER Y NEWTON). LEY DE FICK PARA DIFUSIÓN MOLECULAR. E-mail: williamsscm@hotmail.com TRANSFERENCIA DE MASAS El transporte

Más detalles

TRANSFERENCIA DE CALOR POR CONVECCIÓN

TRANSFERENCIA DE CALOR POR CONVECCIÓN TRANSFERENCIA DE CALOR POR CONVECCIÓN Nos hemos concentrado en la transferencia de calor por conducción y hemos considerado la convección solo hasta el punto en que proporciona una posible condición de

Más detalles

TRANSFERENCIA DE CANTIDAD DE MOVIMIENTO

TRANSFERENCIA DE CANTIDAD DE MOVIMIENTO TRANSFERENCIA DE CANTIDAD DE MOVIMIENTO Clasificación de los fluidos Un fluido es una sustancia o medio continuo que se deforma continuamente en el tiempo ante la aplicación de una solicitación o tensión

Más detalles

Tema 5.-Propiedades de transporte

Tema 5.-Propiedades de transporte Tema 5.- Propiedades de transporte Tema 5.-Propiedades de transporte 5.1-Teoría cinética de los gases 5.2.-Difusión 5.3.-Sedimentación 5.4.-Viscosidad 5.5.-Electroforesis 5.1-Teoría cinética de los gases

Más detalles

Tema 5.- Propiedades de transporte

Tema 5.- Propiedades de transporte Tema 5.- Propiedades de transporte Tema 5.-Propiedades de transporte 5.1-Teoría cinética de los gases 5.2.-Difusión 5.3.-Sedimentación 5.4.-Viscosidad 5.5.-Electroforesis 5.1-Teoría cinética de los gases

Más detalles

TEMA 1. MECANISMOS BÁSICOS DE TRANSMISIÓN DE CALOR

TEMA 1. MECANISMOS BÁSICOS DE TRANSMISIÓN DE CALOR TEMA 1. MECANISMOS BÁSICOS DE TRANSMISIÓN DE CALOR El calor: Es una forma de energía en tránsito. La Termodinámica y La Transferencia de calor. Diferencias. TERMODINAMICA 1er. Principio.Permite determinar

Más detalles

UNIDAD 2: ESTADO GASEOSO

UNIDAD 2: ESTADO GASEOSO UNIDAD 2: ESTADO GASEOSO 1 CARACTERISTICAS DE LOS GASES Los gases poseen masa y ocupan un determinado volumen en el espacio, este volumen queda determinado por el volumen del recipiente que los contiene.

Más detalles

CAPITULO 4 FLUIDIZACIÓN AL VACÍO. La palabra vacío se refiere a un espacio donde no existe materia. Aplicando esta

CAPITULO 4 FLUIDIZACIÓN AL VACÍO. La palabra vacío se refiere a un espacio donde no existe materia. Aplicando esta CAPITULO 4 FLUIDIZACIÓN AL VACÍO 4.1 FLUIDIZACIÓN AL VACÍO La palabra vacío se refiere a un espacio donde no existe materia. Aplicando esta definición al tema de esta tesis se podría decir que se refiere

Más detalles

Disminución de velocidad reactivos con el tiempo, véase como disminuye la pte. t (s) [Sustancia] d[sustancia] v = lim = t dt

Disminución de velocidad reactivos con el tiempo, véase como disminuye la pte. t (s) [Sustancia] d[sustancia] v = lim = t dt CINÉTICA QUÍMICA QUÍMICA º BACHILLERATO 1.- Velocidad de reacción 1.1. Expresión de la velocidad de una reacción química..- Ecuación y constante de velocidad..1. Orden de reacción... Forma de determinar

Más detalles

Ecuación de Arrhenius Teoría de las Colisiones Teoría del Estado de Transición

Ecuación de Arrhenius Teoría de las Colisiones Teoría del Estado de Transición Ecuación de Arrhenius Teoría de las Colisiones Teoría del Estado de Transición Factores que Afectan la Velocidad de las Reacciones Químicas aa + bb Productos velocidad k [A] α [B] β Concentración Temperatura

Más detalles

XIII.- TRANSMISIÓN DE CALOR POR CONVECCIÓN, ANALOGÍAS Y ANÁLISIS DIMENSIONAL

XIII.- TRANSMISIÓN DE CALOR POR CONVECCIÓN, ANALOGÍAS Y ANÁLISIS DIMENSIONAL XIII.- TRANSMISIÓN DE CALOR POR CONVECCIÓN, ANALOGÍAS Y ANÁLISIS DIMENSIONAL XIII.1.- ANALOGÍA ENTRE LA TRANSMISIÓN DE CALOR Y LA CANTIDAD DE MOVI- MIENTO EN LUJO TURBULENTO CAPA LIMITE TÉRMICA SOBRE PLACA

Más detalles

240EQ014 - Fenómenos de Transporte

240EQ014 - Fenómenos de Transporte Unidad responsable: Unidad que imparte: Curso: Titulación: Créditos ECTS: 2017 295 - EEBE - Escuela de Ingeniería de Barcelona Este 713 - EQ - Departamento de Ingeniería Química MÁSTER UNIVERSITARIO EN

Más detalles

ESTADO GASEOSO LEYES PARA GASES IDEALES

ESTADO GASEOSO LEYES PARA GASES IDEALES ESTADO GASEOSO LEYES PARA GASES IDEALES Estados de agregación COMPORTAMIENTO DE LOS GASES No tienen forma definida ni volumen propio Sus moléculas se mueven libremente y al azar ocupando todo el volumen

Más detalles

GASES. Contenidos. Leyes de los gases y su aplicación en la resolución de problemas numéricos.

GASES. Contenidos. Leyes de los gases y su aplicación en la resolución de problemas numéricos. GASES Contenidos Postulados de la teoría cinética de los gases y su relación con las características (expansión, comprensión y difusión) y las propiedades ( presión, volumen y temperatura) que los definen.

Más detalles

TRANSFERENCIA DE CALOR

TRANSFERENCIA DE CALOR Conducción Convección Radiación TRANSFERENCIA DE CALOR Ing. Rubén Marcano Temperatura es una propiedad que depende del nivel de interacción molecular. Específicamente la temperatura es un reflejo del nivel

Más detalles

Lechos empacados, Fluidización

Lechos empacados, Fluidización Lechos empacados, Fluidización El fluido ejerce una fuerza sobre el sólido en la dirección de flujo, conocida como arrastre o rozamiento. Existen una gran cantidad de factores que afectan a los rozamientos

Más detalles

TÍTULO DE INGENIERO QUÍMICO REACTORES QUÍMICOS AVANZADOS

TÍTULO DE INGENIERO QUÍMICO REACTORES QUÍMICOS AVANZADOS A TÍTULO DE INGENIERO QUÍMICO REACTORES QUÍMICOS AVANZADOS NOMBRE Test de 20 preguntas. Tres respuestas posibles y sólo una correcta. Por cada pregunta bien contestada se suma un punto. Por cada dos preguntas

Más detalles

FORMATO CONTENIDO DE CURSO O SÍLABO

FORMATO CONTENIDO DE CURSO O SÍLABO 1. INFORMACIÓN GENERAL DEL CURSO Facultad Ingeniería Fecha de Actualización 25/09/2015 Programa Ingeniería Química Semestre V Nombre Fenómenos de Transporte Código 72104 Prerrequisitos 22147 Créditos 3

Más detalles

DISEÑO DE UN SISTEMA DE DESORCIÓN PARA LA RECUPERACIÓN DE ORO Y PLATA DE CARBÓN ACTIVADO FINO GENERADO EN UNA PLANTA DE PROCESO ADR.

DISEÑO DE UN SISTEMA DE DESORCIÓN PARA LA RECUPERACIÓN DE ORO Y PLATA DE CARBÓN ACTIVADO FINO GENERADO EN UNA PLANTA DE PROCESO ADR. DISEÑO DE UN SISTEMA DE DESORCIÓN PARA LA RECUPERACIÓN DE ORO Y PLATA DE CARBÓN ACTIVADO FINO GENERADO EN UNA PLANTA DE PROCESO ADR Junio, 2016 PROCESO METALURGICO PLANTA ADR PREPARACIÓN DE NaCN CIRCUITO

Más detalles

XIII.- TRANSMISIÓN DE CALOR POR CONVECCIÓN, ANALOGÍAS Y ANÁLISIS DIMENSIONAL

XIII.- TRANSMISIÓN DE CALOR POR CONVECCIÓN, ANALOGÍAS Y ANÁLISIS DIMENSIONAL XIII.- TRANSMISIÓN DE CALOR POR CONVECCIÓN, ANALOGÍAS Y ANÁLISIS DIMENSIONAL XIII.1.- ANALOGÍA ENTRE LA TRANSMISIÓN DE CALOR Y LA CANTIDAD DE MOVI- MIENTO EN LUJO TURBULENTO CAPA LIMITE TÉRMICA SOBRE PLACA

Más detalles

LEYES DE LOS GASES. Leyes de los gases. Leyes de los gases

LEYES DE LOS GASES. Leyes de los gases. Leyes de los gases LEYES DE LOS GASES Estado gaseoso Medidas en gases Ley de Avogadro Ley de Boyle y Mariotte Ley de Charles y Gay-Lussac (1ª) Ley de Charles y Gay-Lussac (2ª) Ecuación n general de los gases ideales Teoría

Más detalles

LABORATORIO DE FENÓMENOS COLECTIVOS

LABORATORIO DE FENÓMENOS COLECTIVOS LABORATORIO DE FENÓMENOS COLECTIVOS LA VISCOSIDAD DE LOS LÍQUIDOS CRUZ DE SAN PEDRO JULIO CÉSAR RESUMEN La finalidad de esta práctica es la determinación de la viscosidad de diferentes sustancias (agua,

Más detalles

PROCESOS DE FILTRACIÓN POR MEMBANAS. M.C. Ma. Luisa Colina Irezabal

PROCESOS DE FILTRACIÓN POR MEMBANAS. M.C. Ma. Luisa Colina Irezabal PROCESOS DE FILTRACIÓN POR MEMBANAS M.C. Ma. Luisa Colina Irezabal La membrana funciona no sólo en función del tamaño de la partícula, sino como una pared de separación selectiva algunas sustancias pueden

Más detalles

INSTITUTO POLITÉCNICO NACIONAL

INSTITUTO POLITÉCNICO NACIONAL SIP-30 INSTITUTO POLITÉCNICO NACIONAL SECRETARÍA DE INVESTIGACIÓN Y POSGRADO DIVISIÓN DE ESTUDIOS DE POSGRADO FORMATO GUÍA PARA REGISTRO DE ASIGNATURAS Hoja 1 de 5 I. DATOS DEL PROGRAMA Y LA ASIGNATURA

Más detalles

P V = n R T LEYES DE LOS GASES

P V = n R T LEYES DE LOS GASES P V = n R T LEYES DE LOS GASES Estado gaseoso Medidas en gases Leyes de los gases Ley de Avogadro Leyes de los gases Ley de Boyle y Mariotte Ley de Charles y Gay-Lussac (1ª) Ley de Charles y Gay-Lussac

Más detalles

Dinámica de Fluidos. Mecánica y Fluidos VERANO

Dinámica de Fluidos. Mecánica y Fluidos VERANO Dinámica de Fluidos Mecánica y Fluidos VERANO 1 Temas Tipos de Movimiento Ecuación de Continuidad Ecuación de Bernouilli Circulación de Fluidos Viscosos 2 TIPOS DE MOVIMIENTO Régimen Laminar: El flujo

Más detalles

Seminario 2. Fuerzas Intermoleculares Líquidos y Sólidos

Seminario 2. Fuerzas Intermoleculares Líquidos y Sólidos Seminario 2. Fuerzas Intermoleculares Líquidos y Sólidos 2.. Justificar los datos de la siguiente tabla: PM Punto de ebullición o C 2-metilbutano (CH 3 ) 2 CHCH 2 CH 3 -cloropropano CH 3 CH 2 CH 2 Cl 72

Más detalles

II. ESTADOS DE AGREGACIÓN. TEORÍA CINÉTICO-MOLECULAR

II. ESTADOS DE AGREGACIÓN. TEORÍA CINÉTICO-MOLECULAR II. ESTADOS DE AGREGACIÓN. TEORÍA CINÉTICO-MOLECULAR 1 Índice 1. Los estados de agregación de la materia 2. Los gases y la teoría cinética 3. Las leyes de los gases 4. La teoría cinético-molecular 2 1

Más detalles

OPERACIONES UNITARIAS

OPERACIONES UNITARIAS OPERACIONES UNITARIAS 2016 TEMA 2 - CALOR INTRODUCCION MECANISMOS DE TRANSFERENCIA DE CALOR Prácticamente en todas las operaciones que realiza el ingeniero interviene la producción o absorción de energía

Más detalles

TEMA 5: INTRODUCCIÓN A LOS REACTORES QUÍMICOS. IngQui-5 [1]

TEMA 5: INTRODUCCIÓN A LOS REACTORES QUÍMICOS. IngQui-5 [1] TEMA 5: INTRODUCCIÓN A LOS REACTORES QUÍMICOS IngQui-5 [1] OBJETIVOS! Definir la etapa de reacción química como base del diseño de reactores, destacando la importancia de la cinética química, tanto en

Más detalles

Tema 5 TEORÍA CINÉTICA DE LOS GASES POSTULADOS DE LA TEORÍA CINÉTICA DE LOS GASES POSTULADOS DE LA TEORÍA CINÉTICA DE LOS GASES

Tema 5 TEORÍA CINÉTICA DE LOS GASES POSTULADOS DE LA TEORÍA CINÉTICA DE LOS GASES POSTULADOS DE LA TEORÍA CINÉTICA DE LOS GASES TEORÍA CINÉTICA DE LOS GASES Tema Entre los siglos XVIII y XIX Bernoulli, Krönig, Clausius, Maxwell y Boltzmann desarrollaron la Teoría Cinética Molecular de los Gases para explicar el comportamiento de

Más detalles

Calculo diferencial e integral, ecuaciones diferenciales y fisicoquímica I.

Calculo diferencial e integral, ecuaciones diferenciales y fisicoquímica I. 372 FACULTAD DE ESTUDIOS SUPERIORES ZARAGOZA CARRERA DE INGENIERÍA QUÍMICA ÁREA PROGRAMA DE ESTUDIO 1. Datos de identificación del programa. Nombre de la asignatura: Ciclo escolar al que pertenece: Cuarto

Más detalles

CAPITULO 4. LA OPERACIÓN UNITARIA COMO PROCESO DE TRANSFERENCIA DE MASA, ENERGÍA Y/O CANTIDAD DE MOVIMIENTO PROF. JOSE MAYORGA

CAPITULO 4. LA OPERACIÓN UNITARIA COMO PROCESO DE TRANSFERENCIA DE MASA, ENERGÍA Y/O CANTIDAD DE MOVIMIENTO PROF. JOSE MAYORGA UNIVERSIDAD DE LOS ANDES FACULTAD DE INGENIERIA INGENIERIA QUIMICA INTRODUCCIÓN A LA INGENIERIA QUIMICA CAPITULO 4. LA OPERACIÓN UNITARIA COMO PROCESO DE TRANSFERENCIA DE MASA, ENERGÍA Y/O CANTIDAD DE

Más detalles

Universidad Nacional de La Plata Facultad de Ciencias Astronómicas y Geofísicas. INTRODUCCIÓN a las CIENCIAS de la ATMÓSFERA

Universidad Nacional de La Plata Facultad de Ciencias Astronómicas y Geofísicas. INTRODUCCIÓN a las CIENCIAS de la ATMÓSFERA Universidad Nacional de La Plata Facultad de Ciencias Astronómicas y Geofísicas INTRODUCCIÓN a las CIENCIAS de la ATMÓSFERA Práctica 2 : ENERGÍA, CALOR, RADIACIÓN SOLAR Y TERRESTRE. Definiciones, ecuaciones

Más detalles

[CONDUCTIVIDAD TÉRMICA]

[CONDUCTIVIDAD TÉRMICA] Curso 2009-10 Conductividad Térmica D.Reyman U.A.M. Curso 2009-10 Curso2009-10 Página 1 Conductividad Térmica. Ley de Fourier Es un proceso de transporte en el que la energía migra en respuesta a un gradiente

Más detalles

ANEJO 9: CÁLCULO CUANTITATIVO DE FLUJOS

ANEJO 9: CÁLCULO CUANTITATIVO DE FLUJOS Anejo 9: cálculo cuantitativo de flujos ANEJO 9: CÁLCULO CUANTITATIVO DE FLUJOS I Anejo 9: cálculo cuantitativo de flujos Para el cálculo cuantitativo de los flujos a partir de los datos experimentales

Más detalles

Hoja de Problemas 6. Moléculas y Sólidos.

Hoja de Problemas 6. Moléculas y Sólidos. Hoja de Problemas 6. Moléculas y Sólidos. Fundamentos de Física III. Grado en Física. Curso 2015/2016. Grupo 516. UAM. 13-04-2016 Problema 1 La separación de equilibrio de los iones de K + y Cl en el KCl

Más detalles

Electricidad y calor. Dr. Roberto Pedro Duarte Zamorano. Departamento de Física

Electricidad y calor. Dr. Roberto Pedro Duarte Zamorano. Departamento de Física Electricidad y calor Dr. Roberto Pedro Duarte Zamorano Departamento de Física 2011 A. Termodinámica Temario 1. Temperatura y Ley Cero. (3horas) 2. Calor y transferencia de calor. (5horas) 3. Gases ideales

Más detalles

cromatografía 03/07/2012 INTRODUCCIÓN Etapas de un análisis cuantitativo Curso: Química Analítica II Loreto Ascar 2012 Proceso Analítico

cromatografía 03/07/2012 INTRODUCCIÓN Etapas de un análisis cuantitativo Curso: Química Analítica II Loreto Ascar 2012 Proceso Analítico cromatografía Curso: Química Analítica II Loreto Ascar 2012 INTRODUCCIÓN Cómo determinar un analito en una muestra problema? X Proceso Analítico Etapas de un análisis cuantitativo Elección del método Obtención

Más detalles

Algunas sustancias gaseosas a T y P ambiente

Algunas sustancias gaseosas a T y P ambiente LOS GASES Algunas sustancias gaseosas a T y P ambiente Fórmula Nombre Características O2 Oxígeno Incoloro,inodoro e insípido H 2 Hidrógeno Inflamable, más ligero que el aire. He Helio Incoloro, inerte,

Más detalles

La materia y sus estados

La materia y sus estados La materia y sus estados Física y Química La materia Oxford University Press España, S. A. Física y Química 3º ESO 2 Todo lo que existe en el universo está constituido por materia. La materia se presenta

Más detalles

CIRCULACION DE FLUIDOS A TRAVES DE LECHOS POROSOS.

CIRCULACION DE FLUIDOS A TRAVES DE LECHOS POROSOS. http://louyauns.blogspot.com/ E-mail: williamsscm@hotmail.com louyauns@yahoo.es CIRCULACION DE FLUIDOS A TRAVES DE LECHOS POROSOS. FLUIDIZACION LECHOS POROSOS Circulación de fluidos a través de lechos

Más detalles

QUÍMICA GENERAL GASES IDEALES

QUÍMICA GENERAL GASES IDEALES QUÍMICA GENERAL GASES IDEALES INTRODUCCIÓN TEORÍA CINÉTICA DE LOS GASES LEYES DE LOS GASES IDEALES TEORÍA CINÉTICA DE LOS GASES DEFINICIÓN Entre 1850 y 1880 Clausius y Boltzmann desarrollaron esta teoría,

Más detalles

Transferencia de Masa ª

Transferencia de Masa ª Transferencia de Masa 213-5-16 14ª # Coeficiente de transferencia de masa de largo alcance k g. # Introducción; # Modelo de la película estancada; # Modelo de Higbie teoría de penetración; # Modelo de

Más detalles

BLOQUE 1: ASPECTOS CUANTATIVOS DE LA QUÍMICA

BLOQUE 1: ASPECTOS CUANTATIVOS DE LA QUÍMICA BLOQUE 1: ASPECTOS CUANTATIVOS DE LA QUÍMICA Unidad 2: Los gases ideales Teresa Esparza araña 1 Índice 1. Los estados de agregación de la materia a. Los estados de la materia b. Explicación según la teoría

Más detalles

GASTO ESPECÍFICO DEL ABSORBENTE. LINEA DE TRABAJO DEL PROCESO DE TRANSFERENCIA DE MASA.

GASTO ESPECÍFICO DEL ABSORBENTE. LINEA DE TRABAJO DEL PROCESO DE TRANSFERENCIA DE MASA. GASTO ESPECÍFICO DEL ABSORBENTE. LINEA DE TRABAJO DEL PROCESO DE TRANSFERENCIA DE MASA. La relación entre las cantidades de portadores de ambas fases será: L kg de portador L La relación entre portadores

Más detalles

4. DIFUSION EN SÓLIDO

4. DIFUSION EN SÓLIDO 4. DIFUSION EN SÓLIDO MATERIALES 13/14 ÍNDICE 1. Conceptos generales. Mecanismos de difusión. 3. Leyes de Fick. 1. Estado estacionario.. Estado no estacionario. 4. Factores de difusión. 5. Aplicaciones

Más detalles

EPO 11 ESCUELA PREPARATORIA OFICIAL NÚM. 11 FUENTE: VALORACIONES: FECHA: CUAUTITLAN IZCALLI, MEX. MATERIA: QUÍMICA II

EPO 11 ESCUELA PREPARATORIA OFICIAL NÚM. 11 FUENTE: VALORACIONES: FECHA: CUAUTITLAN IZCALLI, MEX. MATERIA: QUÍMICA II Diagnóstico 1PTO: NO ENTREGADA EN TIEMPO Y FORMA. 2PTS: ACTIVIDAD INCOMPLETA. 3PTS: ACTIVIDA COMPLETA. 1 TEMÁTICA INTEGRADORA ESCENARIO DIDÁCTICO PREGUNTA GENERADORA 2 Desarrolla, analiza e interpreta

Más detalles

XII.- TRANSMISIÓN DE CALOR POR CONVECCIÓN ANALOGÍAS Y ANÁLISIS DIMENSIONAL

XII.- TRANSMISIÓN DE CALOR POR CONVECCIÓN ANALOGÍAS Y ANÁLISIS DIMENSIONAL XII.- TRANSMISIÓN DE CALOR POR CONVECCIÓN ANALOGÍAS Y ANÁLISIS DIMENSIONAL XII..- ANALOGÍA ENTRE LA TRANSMISIÓN DE CALOR Y LA CANTIDAD DE MOVI- MIENTO EN LUJO TURBULENTO CAPA LIMITE TÉRMICA SOBRE PLACA

Más detalles

SEGUNDA OLIMPIADA NACIONAL UNIVERSITARIA DE FÍSICA (ONUF) 14 de marzo de 2014

SEGUNDA OLIMPIADA NACIONAL UNIVERSITARIA DE FÍSICA (ONUF) 14 de marzo de 2014 DATOS PERSONALES: Nombre: Universidad: Carrera: Año: Dirección: Teléfono: e-mail: Fecha de nacimiento: Carnet de Identidad: FIRMA: PUNTUACIONES: 1:, 2:, 3:, 4:, 5: TOTAL: LAS SOLUCIONES: Las soluciones

Más detalles

Soluciones Analíticas de Navier Stokes.

Soluciones Analíticas de Navier Stokes. 1 Soluciones Analíticas de Navier Stokes. Problema 1 Un fluido newtoniano fluye en el huelgo formado por dos placas horizontales. La placa superior se mueve con velocidad u w, la inferior está en reposo.

Más detalles

DINÁMICA DE LOS FLUIDOS

DINÁMICA DE LOS FLUIDOS DINÁMICA DE LOS FLUIDOS Principios fundamentales La dinámica de los fluidos es simple pero en Sedimentología hay que considerar el efecto que producen los sólidos en las propiedades de la fase fluida pura.

Más detalles

UNIVERSIDAD NACIONAL DE INGENIERIA FACULTAD DE INGENIERIA MECANICA DEPARTAMENTO ACADEMICO DE SILABO P.A II

UNIVERSIDAD NACIONAL DE INGENIERIA FACULTAD DE INGENIERIA MECANICA DEPARTAMENTO ACADEMICO DE SILABO P.A II UNIVERSIDAD NACIONAL DE INGENIERIA FACULTAD DE INGENIERIA MECANICA DEPARTAMENTO ACADEMICO DE SILABO P.A. 2011-II 1. INFORMACION GENERAL Nombre del curso : Transferencia de Calor y Masa Código del curso

Más detalles

Teniendo en cuenta que si el voltaje se mide en Volts y la corriente en Amperes las unidades de resistencia resultan ser

Teniendo en cuenta que si el voltaje se mide en Volts y la corriente en Amperes las unidades de resistencia resultan ser Ley de Ohm La resistencia se define como la razón entre la caída de tensión, entre los dos extremos de una resistencia, y la corriente que circula por ésta, tal que 1 Teniendo en cuenta que si el voltaje

Más detalles

Balance de energía en un diafragma

Balance de energía en un diafragma Balance de energía en un diafragma Objetivos de la práctica! Estudiar el perfil de presiones que se produce a lo largo de una tubería en la que se encuentra instalado un diafragma.! Determinar el coeficiente

Más detalles

Red cristalina perfecta

Red cristalina perfecta Difusión Red cristalina perfecta Defectos puntuales Auto-defectos Auto-intersticial Vacancia Defectos puntuales Vacancias en equilibrio Qv Nv = N exp Qv KT Donde Nv: Número de vacantes N: Número de sitios

Más detalles

un átomo A en cinco átomos B en Calcular la densidad del material cristalino. Datos: Solución: Cristal: red hexagonal P más base: Volumen de la celda

un átomo A en cinco átomos B en Calcular la densidad del material cristalino. Datos: Solución: Cristal: red hexagonal P más base: Volumen de la celda Nombre y apellidos: Número de matrícula: todos los problemas breves valen lo mismo las respuestas tienen que estar justificadas (razonamiento matemático, gráfico, etc) la única respuesta que se corrige

Más detalles

CONDICIONES DE FRONTERA DIFUSION ESTACIONARIA DE MASA A TRAVES DE UNA PARED

CONDICIONES DE FRONTERA DIFUSION ESTACIONARIA DE MASA A TRAVES DE UNA PARED http://louyauns.blogspot.com/ E-mail: williamsscm@hotmail.com louyauns@yahoo.es CONDICIONES DE FRONTERA DIFUSION ESTACIONARIA DE MASA A TRAVES DE UNA PARED CONDICIONES DE FRONTERA Distribución de la concentración

Más detalles

TEMA 1 INTRODUCCIÓN 1

TEMA 1 INTRODUCCIÓN 1 TEMA 1 INTRODUCCIÓN 1 1.1 INTERACCIÓN ATMÓSFERA- OCÉANO 1.2 CALOR LATENTE 1.3 CALOR ESPECÍFICO 1.4 TRANSFERENCIA DE CALOR 1.5 DENSIDAD 1.6 COMPARACIÓN ENTRE LAS PROPIEDADES DE LA ATMÓSFERA Y DEL OCÉANO

Más detalles

TEMA N 4 Y 5 EJERCICIOS PROPUESTOS DE SISTEMAS DINÁMICOS SEGUNDO ORDEN Y ORDEN SUPERIOR

TEMA N 4 Y 5 EJERCICIOS PROPUESTOS DE SISTEMAS DINÁMICOS SEGUNDO ORDEN Y ORDEN SUPERIOR UNIVERSIDAD NACIONAL EXPERIMENTAL FRANCISCO DE MIRANDA COMPLEJO ACADÉMICO EL SABINO PROGRAMA DE INGENIERÍA QUÍMICA DPTO DE MECÁNICA Y TECNOLOGÍA DE LA PRODUCCIÓN DINÁMICA Y CONTROL DE PROCESOS TEMA N 4

Más detalles

Aeronaves y Vehículos Espaciales

Aeronaves y Vehículos Espaciales Aeronaves y Vehículos Espaciales Tema 3 El Campo Fluido Francisco Gavilán Jiménez Sergio Esteban Roncero Departamento de Ingeniería Aeroespacial y Mecánica de Fluidos Escuela Superior de Ingenieros Universidad

Más detalles

-Al analizar el flujo reptante alrededor de una esfera vimos que el arrastre tiene dos contribuciones: el arrastre de forma y la fricción de piel.

-Al analizar el flujo reptante alrededor de una esfera vimos que el arrastre tiene dos contribuciones: el arrastre de forma y la fricción de piel. SEPARACIÓN DE LA CAPA LIMITE -Al analizar el flujo reptante alrededor de una esfera vimos que el arrastre tiene dos contribuciones: el arrastre de forma y la fricción de piel. -La fricción de piel siempre

Más detalles

ASPECTOS GENERALES DE LA TRANSFERENCIA DE CALOR U.C: TRANSFERENCIA DE CALOR

ASPECTOS GENERALES DE LA TRANSFERENCIA DE CALOR U.C: TRANSFERENCIA DE CALOR ASPECTOS GENERALES DE LA TRANSFERENCIA DE CALOR U.C: TRANSFERENCIA DE CALOR ASPECTOS GENERALES DE LA TRASFERENCIA DE CALOR. Objetivo Didáctico: Establecer un marco conceptual y metodológico para la correcta

Más detalles

Dr. Rogelio Cuevas García 1

Dr. Rogelio Cuevas García 1 1 Los pasos necesarios para que sea posible observar a reacción: B 1) Transferencia de masa del reactivo desde el seno del fluido hasta la superficie externa de la partícula catalítica. Este fenómeno se

Más detalles

QUÍMICA 2º BACHILLER: REPASO GENERAL 1º A.- Conceptos previos

QUÍMICA 2º BACHILLER: REPASO GENERAL 1º A.- Conceptos previos EL RINCÓN DEL APROBADO Tu academia en Orense Galerías Santo Domingo 607342451 QUÍMICA 2º BACHILLER: REPASO GENERAL 1º A.- Conceptos previos A.1.- Átomo, peso atómico, peso molecular, mol. Un átomo es una

Más detalles

Química General. Cap. 3: Gases. Departamento de Química. Universidad Nacional Experimental del Táchira (UNET) San Cristóbal 2007

Química General. Cap. 3: Gases. Departamento de Química. Universidad Nacional Experimental del Táchira (UNET) San Cristóbal 2007 Química General Departamento de Química Cap. 3: Gases Universidad Nacional Experimental del Táchira (UNET) San Cristóbal 2007 Propiedades de los Gases: Presión del Gas Presión del gas Fuerza (N) P (Pa)

Más detalles

Gases...1. Características: Volumen:...1. Temperatura:

Gases...1. Características: Volumen:...1. Temperatura: Índice de contenido Gases......1 Características:......1 Volumen:......1 Temperatura:......1 Presión:......2 Medición de presiones:......2 Ley de Boyle (relación presión volumen):......2 Ley de Charles

Más detalles

ESTADOS DE AGREGACIÓN DE LA MATERIA Y SUS PROPIEDADES

ESTADOS DE AGREGACIÓN DE LA MATERIA Y SUS PROPIEDADES ESTADOS DE AGREGACIÓN DE LA MATERIA Y SUS PROPIEDADES ESTADO GASEOSO: F atrac.e/molec. > E cinética

Más detalles

Teniendo en cuenta que si el voltaje se mide en Volts y la corriente en Amperes las unidades de resistencia resultan ser

Teniendo en cuenta que si el voltaje se mide en Volts y la corriente en Amperes las unidades de resistencia resultan ser Ley de Ohm La resistencia eléctrica de un resistor se define como la razón entre la caída de tensión, entre los extremos del resistor, y la corriente que circula por éste, tal que Teniendo en cuenta que

Más detalles

Fluidodinámica computacional. (CFD).

Fluidodinámica computacional. (CFD). 37 VI. Fluidodinámica computacional. (CFD). VI.1 Qué es la. La o CFD (Computational Fluid Dynamics) es una disciplina de la mecánica de fluidos donde se realiza la simulación numérica del comportamiento

Más detalles

UNIVERSIDAD AUTÓNOMA DE COAHUILA

UNIVERSIDAD AUTÓNOMA DE COAHUILA FORMATO DE ASIGNATURAS LLENAR UN FORMATO PARA TODAS Y CADA UNA DE LAS MATERIAS DEL PRORGAMA CURRICULAR Y DE MATERIAS EXTRACURRICULARES. Las notas en color deberá eliminarlas para la presentación final

Más detalles

CINÉTICA QUÍMICA. También deberemos tener en cuenta los coeficientes estequiométricos.

CINÉTICA QUÍMICA. También deberemos tener en cuenta los coeficientes estequiométricos. CINETICA CINÉTICA QUÍMICA Estudia la velocidad con la que tienen lugar las reacciones, los factores que influyen en ella y el mecanismo mediante el que se lleva a cabo. VELOCIDAD DE REACCIÓN Cuando se

Más detalles

Formulación de Problemas de Flujo de Fluidos en Medios Porosos.

Formulación de Problemas de Flujo de Fluidos en Medios Porosos. Simulación Numérica de Yacimientos Dr. Fernando Rodríguez de la Garza e-mail frodriguezd@pep.pemex.com Tel 8712, 622 317 al 1 Capítulo 2. Formulación de Problemas de Flujo de Fluidos en Medios Porosos.

Más detalles

Estimación de la viscosidad de un líquido

Estimación de la viscosidad de un líquido Estimación de la viscosidad de un líquido Objetivos de la práctica! Estudiar la variación de la altura de un líquido viscoso con el tiempo en el interior de un tanque que descarga a través de un tubo.!

Más detalles

mecanismos de reacción

mecanismos de reacción 4. Cinética química Química (S, Grado Biología) UAM 4. Cinética química Velocidad de reacción Concepto y medida Contenidos Ecuación de velocidad (o ecuación cinética) de una reacción Orden de reacción;

Más detalles

Clase de Interacciones Intermoleculares. Milton de la Fuente. 27 de marzo de 2007

Clase de Interacciones Intermoleculares. Milton de la Fuente. 27 de marzo de 2007 27 de marzo de 2007 intermoleculares Porqué se derrite el helado pero no el cono? intermoleculares Son responsables de 1. Las propiedades macroscópicas de la materia 2. Los estados condensados 3. El comportamiento

Más detalles

Sílabo de Balance de Materia y Energía

Sílabo de Balance de Materia y Energía Sílabo de Balance de Materia y Energía I. Datos Generales Código Carácter A0037 Obligatorio Créditos 5 Periodo Académico 2017 Prerrequisito Física II Horas Teóricas: 4 Prácticas: 2 II. Sumilla de la asignatura

Más detalles

1. El modelo moderno del átomo se basa en el trabajo de

1. El modelo moderno del átomo se basa en el trabajo de Química de diagnóstico Nombre: Período: Fecha: Instrucciones: Por favor, conteste las siguientes preguntas en la medida de su capacidad. Asegúrese de mostrar todo su trabajo y circule su respuesta. Usted

Más detalles