Teoría de la conmutación. Álgebra de Boole

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Teoría de la conmutación. Álgebra de Boole"

Transcripción

1 Álgebra de Boole Defiicioes y axiomas Propiedades Variables y fucioes booleaas Defiicioes Propiedades Formas de represetació Fucioes booleaas y circuitos combiacioales Puertas lógicas Puertas lógicas fudametales Puertas lógicas derivadas

2 Álgebra de Boole 2

3 Defiició de Álgebra de Boole U cojuto es u álgebra de Boole se verifica: a) Es u cojuto fiito B co al meos dos elemetos, N (elemeto ulo), U (elemeto uiversal), y tres operacioes: dos biarias y ua uaria ( B, *, +, ) N B U B b) Cumple los 6 axiomas de HUNTINGTON 3

4 Axiomas de HUNTINGTON. Las operacioes *, +,, debe ser cerradas x*y B x,y B x + y B x B 2. Operacioes co N,U x * N = N x * U = x x + N = x x + U = U 3. Comutatividad x * y = y * x x + y = y + x 4

5 4. Distributiva. x * (y + z) = (x * y) + (x * z ) x + (y * z) = (x + y) * (x + z) 5. Complemetatividad. x * x = N x B, x B / x + x = U 6. Hay por lo meos dos elemetos distitos e B. 5

6 Propiedades del Álgebra de Boole. Propiedad de Idempotecia x * x = x x + x = x 2. Propiedad Asociativa x * ( y * z ) = ( x * y ) * z x + ( y + z ) = ( x + y ) + z 6

7 3. Propiedad de Absorció x + ( x * y ) = x x * ( x + y ) = x 4. Ley del coseso x + ( x * y ) = x + y x * ( x + y ) = x * y 5. Ley de ivolució (x) = x 7

8 Se puede demostrar que B={,}, N=, U=, juto co las operacioes *, +,, defiidas por las siguietes tablas de verdad, forma u álgebra de boole. + * OR AND NOT 8

9 Variables y fucioes booleaas 9

10 Defiicioes Defiimos costate sobre B, a todo elemeto de B Defiimos variable de B, todo símbolo x que represeta a cualquier elemeto de B Defiimos literal de B, a toda costate ó variable Defiimos fució booleaa a la aplicació: f : B B dode: B = B B... B / x = (x,x 2,...,x ) B

11 Defiimos fució costate a la fució f a : f : B B / (x,x,...,x ) B, f (x,x,...,x ) = a B a 2 a 2 Defiimos fució proyecció f p : f : B B / (x,x,...,x ) B, f (x,x,...,x ) = x p 2 p 2 i dode x es ua variable de B i Defiimos fució degeerada a la fució f d : f : B B / x,z B, f (x) = f (z) d d d Defiimos fució parcialmete especificada a la aplicació: f : B B dode B =,,# d 3 3 { }

12 Defiimos térmio producto a todo literal o producto de literales, e los que cada variable aparece como máximo ua vez. Defiimos mitérmio o producto caóico al térmio producto de ua fució, que está formado por las variables de dicha fució, apareciedo éstas ua sola vez de forma complemetada o si complemetar. Defiimos forma ormal disyutiva de ua fució, a su represetació algebraica, que costa de u sólo térmio producto o de la suma de varios de ellos. Defiimos térmio suma a todo literal o suma lógica de literales, e las que cada variable aparece como máximo ua vez. Defiimos maxtérmio o suma caóica al térmio suma de ua fució, que está formado por las variables de dicha fució, apareciedo éstas ua sola vez de forma complemetada o si complemetar. Defiimos forma ormal cojutiva de ua fució, a su represetació algebraica, que costa de u sólo térmio suma o del producto de varios de ellos. 2

13 Para variables podemos formar 2 mitérmios y 2 maxtérmios. Notació para mitérmios y maxtérmios: x * x *... * x * x = m x + x x + x = M x * x *... * x * x = m x + x x + x = M x * x *... * x * x = m x + x x + x = M x * x 2 *... * x - * x = m x + x x + x = M x * x *... * x * x = m x + x x + x = M Defiimos vector asociado a u mitérmio m i de variables, al obteido colocado e las posicioes correspodietes a las variables NO complemetadas, y colocado e las posicioes correspodietes a las variables complemetadas. Ejp: m 5 = x * x 2 * x 3 * x 4 Defiimos vector asociado a u maxtérmio M i de variables, al obteido colocado e las posicioes correspodietes a las variables NO complemetadas, y colocado e las posicioes correspodietes a las variables complemetadas. Ejp: M = x + x 2 + x 3 + x 4 3

14 Propiedades Dadas las fucioes booleaas, f, g, las siguietes fucioes f*g, f+g, g, tambié so booleaas. f*g(x) = f(x) * g(x) x = (x,x,...,x ) B Teorema de Dualidad. 2 f+g(x) = f(x) + g(x) x = (x,x,...,x ) B 2 g(x) = g(x) x = (x,x,...,x ) B 2 Si a ua idetidad o teorema de comutació se sustituye {+,*,,} por {*,+,,} respectivamete, se obtiee otra idetidad o teorema dual al origial. Teorema de DeMORGAN. x + x x = x * x *... * x 2 2 x * x *... * x = x + x x 2 2 4

15 Teorema de SHANON (Teorema geeralizado de DeMorga). f(x,x 2,..., x,*, +,,) = f(x,x 2,..., x, +,*,,) Teorema de los mitérmios para variables. 2 i= m (x,x,...,x ) = i 2 Teorema de los maxtérmios para variables. 2 i= M (x,x,...,x ) = i 2 5

16 Teorema del desarrollo de Shao, para mitérmios, para ua fució f(x) = f(x,x 2,...,x ), de variables. [ 2 ] [ 2 ]... [(x * x 2 *...* x ) * f(,,...,)] = [ m * f(,,...,)] +[ m * f(,, ] f(x) = (x * x *...* x ) * f(,,...,) + (x * x *...* x ) * f(,,...,) =...,) m * f(,,...,) 2 - Teorema del desarrollo de Shao, para maxtérmios, para ua fució f(x) = f(x,x 2,...,x ), de variables. [ 2 ] [ 2 ] *... * [(x x 2... x ) f(,,...,)] [ M f(,,...,)]* [ M f(,,...,)]*... * M + f(,,...,) f(x) = (x + x x ) + f(,,...,) * (x + x x ) + f(,,...,) * = =

17 Como cosecuecia del teorema del desarrollo de Shao para mitérmios, teemos que toda fució f(x), admite ua represetació, que deomiaremos forma caóica disyutiva, formada por la suma de los mitérmios cuyos vectores asociados V K verifica que f(v K )=. f(x) = m dode f(v ) = k k Como cosecuecia del teorema del desarrollo de Shao para maxtérmios, teemos que toda fució f(x), admite ua represetació, que deomiaremos forma caóica cojutiva, formada por el producto de los maxtérmios cuyos vectores asociados V K verifica que f(v K )=. f(x) = M dode f(v ) = k k 7

18 Teorema para obteer la fució complemetada de ua dada e forma caóica disyutiva. Dada ua fució g(x), expresada e forma caóica disyutiva, su fució complemetada g(x), estará dada por la suma de los mitérmios que o aparece e g(x). Teorema para obteer la fució complemetada de ua dada e forma caóica cojutiva. Dada ua fució g(x), expresada e forma caóica cojutiva, su fució complemetada g(x), estará dada por el producto de los maxtérmios, que o aparece e g(x). 8

19 Formas de represetació a) Esquemas de Circuitos U circuito electróico, descrito a ivel de dispositivos, puede ser cosiderado como ua forma de represetar a la fució booleaa que implemeta b) Diagrama de puertas lógicas Cosiste e represetar ua fució, mediate su implemetació utilizado puertas lógicas c) Expresió algebraica Permite ua represetació más compacta, pero la iformació se preseta más oculta 9

20 d) Métodos de eumeració d.)tabla de verdad. Listado que de forma explícita represeta el resultado de la fució, para cada ua y todas las combiacioes de las etradas d.2) Vector de valores. Vector formado por el resultado de la fució, e el orde creciete de las combiacioes e las variables de etrada d.3) Mitérmios. La fució e forma caóica disyutiva d.4) Maxtérmios. La fució e forma caóica cojutiva e) Mapas de Karaugh Es ua represetació gráfica de la tabla de verdad mediate ua matriz bidimesioal, dode cada posible combiació de los valores biarios de las variables de etrada, está represetada por ua celda ó casilla. Las etradas está ordeadas e código Gray, de forma que dos casillas adyacetes (horizotal ó verticalmete), sólo tiee distito valor e ua de las etradas 2

21 Mapas de Karaugh de 3 variables y de 4 variables x, x 2 x x, x 2 x 3, x

22 Mapa de Karaugh de 5 variables x 2, x 3 x 2, x 3 x 4, x 5 x 4,x x = x = 22

23 Mapa de Karaugh de 6 variables x 3, x 4 x 5, x x x 2 = x 3, x 4 x 5, x x x 2 = x 3, x 4 x 3, x 4 x 5, x 6 x 5, x x x 2 = x x 2 = 23

24 Fucioes booleaas y circuitos combiacioales x z x 2 z 2 x m z Para implemetar u circuito digital combiacioal de m etradas y salidas, será ecesario implemetar fucioes booleaas cada ua de ellas depediete de m variables. f (x, x 2,..., x m) f 2(x, x 2,..., x m)... f (x, x,..., x ) 2 m 24

25 Puertas lógicas 25

26 Puertas lógicas fudametales x NOT z z = x NOT x y AND z z = x y AND x y OR z z = x + y OR 26

27 Puertas lógicas derivadas x y XOR z z = x y = x y + x y XOR x y NAND z z = x y NAND x y NOR z z = x + y NOR x y XNOR z z = x y XNOR 27

28 Ejemplo de fució booleaa 28

29 Diagrama de circuitos v x v x2 v x3 v x4 v z 29

30 Diagrama de puertas lógicas 3

31 Expresió algebraica f(x,x 2,x 3,x 4) = (x *x 2) + (x 3 *x 4) Tabla de verdad x x 2 x 3 x 4 z 3

32 Vector de salida f(x,x 2,x 3,x 4 ) = (,,,,,,,,,,,,,,,) Forma caóica disjutiva f(x,x,x,x) = m(,,2,4,5,6,8,9,) Forma caóica cojutiva f(x,x,x,x) = M(3,7,,2,3,4,5) Mapa de Karaugh. x,x 2 x 3,x 4 32

4 ALGEBRA DE BOOLE. 4.1 Introducción. 4.2 Axiomas. (a) a + b = b + a (b) a b = b a. (a) a + (b c) = (a + b) (a + c) (b) a (b + c) = a.

4 ALGEBRA DE BOOLE. 4.1 Introducción. 4.2 Axiomas. (a) a + b = b + a (b) a b = b a. (a) a + (b c) = (a + b) (a + c) (b) a (b + c) = a. Arquitectura del Computador 4 ALGEBRA DE BOOLE 4. Itroducció. El álgebra de Boole es ua herramieta de fudametal importacia e el mudo de la computació. Las propiedades que se verifica e ella sirve de base

Más detalles

Notas de Teórico. Álgebra de Boole

Notas de Teórico. Álgebra de Boole Departameto de Arquitectura Istituto de Computació Uiversidad de la República Motevideo - Uruguay Álgebra de Boole Arquitectura de Computadoras (Versió 4.3a - 06) 4 ALGEBRA DE BOOLE 4. Itroducció. El álgebra

Más detalles

P(U)=, 5, 8, 9, b, 5, 8, 5, 9, 5, b, 8, 9, 8, b, 9, b, 5, 8, 9, 5, 8, b, 5, 9, b, 8, 9, b, U. {8,b} Figura 1

P(U)=, 5, 8, 9, b, 5, 8, 5, 9, 5, b, 8, 9, 8, b, 9, b, 5, 8, 9, 5, 8, b, 5, 9, b, 8, 9, b, U. {8,b} Figura 1 Algebras de Boole Cojuto de partes. Dado u cojuto =,, podemos eumerar todos los subcojutos posibles de A, o dicho de otro modo todos los cojutos icluídos e A. Costruímos etoces u uevo cojuto co todos esos

Más detalles

Prof: Zulay Franco 1

Prof: Zulay Franco 1 Biestables 1.1 Itroducció Ua vetaja importate de los sistemas digitales sobre los aalógicos es la capacidad de almacear fácilmete grades catidades de iformació por periodos cortos o largos. Esta capacidad

Más detalles

TRANSFORMADA RAPIDA DE FOURIER (FFT)

TRANSFORMADA RAPIDA DE FOURIER (FFT) Capítulo 6 TRASORADA RAPIDA DE OURIER (T) Los temas a tratar e el presete capítulo so: 6. Algoritmo T 6. T Iversa. 6.3 Implemetació Televisió Digital 6- La implemetació de la ec. (4.5) ivolucra u úmero

Más detalles

Capítulo III Teoría de grupos

Capítulo III Teoría de grupos Capítulo III Teoría de grupos Tema 1. Leyes de composició iteras. 1.1 Leyes de composició iteras. Dado u cojuto A, se defie como Ley de composició itera defiida e A a toda aplicació, A A A ( x, y) x y

Más detalles

Espacio Vectorial Definición: Sea V un conjunto donde hemos definido una ley u operación interna, que

Espacio Vectorial Definición: Sea V un conjunto donde hemos definido una ley u operación interna, que Sea V u cojuto dode hemos defiido ua ley u operació itera, que desigaremos por + V V. Sea K u cuerpo (comutativo) y sea, por último, ua operació extera que desigaremos por K V V. Diremos que (V,+, ) tiee

Más detalles

ÍNDICE. Prólogo Capítulo 1. Ecuaciones diferenciales ordinarias. Generalidades.. 11 Introducción teórica Ejercicios resueltos...

ÍNDICE. Prólogo Capítulo 1. Ecuaciones diferenciales ordinarias. Generalidades.. 11 Introducción teórica Ejercicios resueltos... ÍNDICE Prólogo... 9 Capítulo 1. Ecuacioes difereciales ordiarias. Geeralidades.. 11 Itroducció teórica... 13 Ejercicios resueltos.... 16 Capítulo 2. itegració de la ecuació de primer orde. La ecuació lieal...................................................................

Más detalles

De esta forma, el problema de encontrar la mejor recta se concentra en calcular los valores de la pendiente (m) y de la ordenada al origen (b)

De esta forma, el problema de encontrar la mejor recta se concentra en calcular los valores de la pendiente (m) y de la ordenada al origen (b) MÉTODO DE MÍNIMOS CUADRADOS E muchos de los experimetos que se realiza e Física, se obtiee u cojuto de parejas de úmeros (abscisa, ordeada) por los cuales ecesitamos, para obteer u modelo matemático que

Más detalles

Series de números reales

Series de números reales Tema 6 Series de úmeros reales 6. Series de úmeros reales. Defiició 6. Sea {a } ua sucesió de úmeros reales y cosideremos la sucesió {S }, defiida por S = a + a + + a, para cada IN, que llamaremos sucesió

Más detalles

Sistemas de Ecuaciones Lineales. M. en I. Gerardo Avilés Rosas

Sistemas de Ecuaciones Lineales. M. en I. Gerardo Avilés Rosas Sistemas de Ecuacioes Lieales M. e I. Gerardo Avilés Rosas Octubre de 206 Tema 5 Sistemas de Ecuacioes Lieales Objetivo: El alumo formulará, como modelo matemático de problemas, sistemas de ecuacioes lieales

Más detalles

6. SUCESIONES Y SERIES NUMÉRICAS 6.1. SUCESIONES NUMÉRICAS

6. SUCESIONES Y SERIES NUMÉRICAS 6.1. SUCESIONES NUMÉRICAS Águeda Mata y Miguel Reyes, Dpto. de Matemática Aplicada, FI-UPM. 6. SUCESIONES Y SERIES NUMÉRICAS 6... Sucesioes de úmeros reales 6.. SUCESIONES NUMÉRICAS Se llama sucesió de úmeros reales a cualquier

Más detalles

ÁLGEBRAS BOOLEANAS. Unidad 4

ÁLGEBRAS BOOLEANAS. Unidad 4 Uidad 4 ÁLGEBRAS BOOLEANAS George Boole, famoso matemático del siglo XIX, e el año 854 escribió el libro The Laws of Thought, que cotribuyó para el desarrollo de ua teoría lógica que utilizaba símbolos

Más detalles

α, entonces se cumple que: T ( x) α T ( x)

α, entonces se cumple que: T ( x) α T ( x) HÉCTOR ESCOAR Uidad 3 Álgebra Lieal ALGERA LINEAL UNIDAD 3: OPERADORES LINEALES CONCEPTO DE OPERADOR LINEAL: sea V, dos espacios lieales, etoces u operador lieal (trasformació lieal) es ua fució T : V

Más detalles

CÁLCULO DE PROBABILIDADES :

CÁLCULO DE PROBABILIDADES : CÁLCULO DE PROBBILIDDES : Experimeto aleatorio. Espacio muestral. Sucesos. Álgebra de sucesos. Frecuecias. Propiedades. Probabilidad. Resume de Combiatoria. Probabilidad codicioada. Teoremas. PROBBILIDD

Más detalles

Sucesiones y series de números reales

Sucesiones y series de números reales 38 Matemáticas : Cálculo diferecial e IR Capítulo Sucesioes y series de úmeros reales Sucesioes Defiició 37- Llamaremos sucesió de úmeros reales a cualquier aplicació f: N R y la represetaremos por { a,

Más detalles

Departamento de Matemáticas

Departamento de Matemáticas MA5 Clase 5: Series de potecias. Operacioes co series de potecias. Series de potecias Elaborado por los profesores Edgar Cabello y Marcos Gozález Cuado estudiamos las series geométricas, demostramos la

Más detalles

No negatividad. Definición positiva. Propiedad multiplicativa. Desigualdad triangular. Identidad de indiscernibles. Desigualdad triangular

No negatividad. Definición positiva. Propiedad multiplicativa. Desigualdad triangular. Identidad de indiscernibles. Desigualdad triangular Repaso: Propiedades fudametales del Valor absoluto: x 0 x = 0 x = 0 xy = x y x + y x + y x = x x y = 0 x = y x y x z + z y x y x y No egatividad Defiició positiva Propiedad multiplicativa Desigualdad triagular

Más detalles

una sucesión de funciones de A. Formemos una nueva sucesión de funciones {S n } n=1 de A de la forma siguiente:

una sucesión de funciones de A. Formemos una nueva sucesión de funciones {S n } n=1 de A de la forma siguiente: Tema 8 Series de fucioes Defiició 81 Sea {f } ua sucesió de fucioes de A Formemos ua ueva sucesió de fucioes {S } de A de la forma siguiete: S (x) = f 1 (x) + f 2 (x) + + f (x) = f k (x) Al par de sucesioes

Más detalles

CLAVES DE CORRECCIÓN GUÍA DE EJERCITACIÓN FACTORES Y PRODUCTOS PREGUNTA ALTERNATIVA Nivel

CLAVES DE CORRECCIÓN GUÍA DE EJERCITACIÓN FACTORES Y PRODUCTOS PREGUNTA ALTERNATIVA Nivel x Estimado alumo: Aquí ecotrarás las claves de correcció, las habilidades y los procedimietos de resolució asociados a cada preguta, o obstate, para reforzar tu apredizaje es fudametal que asistas a la

Más detalles

6. Sucesiones y Series numéricas Sucesiones numéricas DEFINICIONES

6. Sucesiones y Series numéricas Sucesiones numéricas DEFINICIONES 6. Sucesioes y Series uméricas 6.. Sucesioes uméricas 6... DEFINICIONES Sucesioes de úmeros reales Se llama sucesió de úmeros reales a cualquier lista ordeada de úmeros reales: a, a 2, a 3,..., a,...,

Más detalles

Técnicas Cuantitativas II Muestra y Estadísticos Muestrales. TC II Muestra y Estadísticos Muestrales 1 / 20

Técnicas Cuantitativas II Muestra y Estadísticos Muestrales. TC II Muestra y Estadísticos Muestrales 1 / 20 Técicas Cuatitativas II 2012-2013 Muestra y Estadísticos Muestrales TC II Muestra y Estadísticos Muestrales 1 / 20 Ídice Ídice Cocepto de muestra y Alguos ejemplos de variaza de la media Cocepto de muestra

Más detalles

Tema 2: Diagonalización de matrices cuadradas

Tema 2: Diagonalización de matrices cuadradas Departameto de Aálisis Ecoómico UNIVERSIDAD DE ZARAGOZA Tema : Diagoalizació de matrices cuadradas.1. El cojuto R Defiició: Dados úmeros reales x 1, x,..., x R, se llama -tupla ordeada a x = ( x 1,, x,...,

Más detalles

1. SUCESIONES Y SERIES

1. SUCESIONES Y SERIES 1. SUCESIONES Y SERIES Objetivo: El alumo aalizará sucesioes y las series para represetar fucioes por medio de series de potecias 1.1 Defiició se sucesió. Límite y covergecia de ua sucesió qué es ua sucesió?

Más detalles

2.- ESPACIOS VECTORIALES. MATRICES.

2.- ESPACIOS VECTORIALES. MATRICES. 2.- ESPACIOS VECTORIALES. MATRICES. 2.1. -ESPACIOS VECTORIALES Sea u cojuto V, etre cuyos elemetos (a los que llamaremos vectores) hay defiidas dos operacioes: SUMA DE DOS ELEMENTOS DE V: Si u, v V, etoces

Más detalles

Álgebra I Práctica 2 - Números naturales e inducción

Álgebra I Práctica 2 - Números naturales e inducción FCEyN - UBA - Segudo Cuatrimestre 203 Álgebra I Práctica 2 - Números aturales e iducció. Reescribir cada ua de las siguietes sumas usado el símbolo de sumatoria (a) + 2 + 3 + 4 + + 00, (b) + 2 + 4 + 8

Más detalles

ANALISIS CONVEXO CAPITULO CONVEXIDAD

ANALISIS CONVEXO CAPITULO CONVEXIDAD CAPITULO 2 ANALISIS CONVEXO 2.1 CONVEXIDAD Bajo este título geérico, se itroduce e esta secció las ocioes de cojuto covexo, fució cócava y fució covexa. Coceptos todos ellos que juega u destacado papel

Más detalles

4. Sucesiones de números reales

4. Sucesiones de números reales 4. Sucesioes de úmeros reales Aálisis de Variable Real 2014 2015 Ídice 1. Sucesioes y límites. Coceptos básicos 2 1.1. Defiició de sucesió... 2 1.2. Sucesioes covergetes... 2 1.3. Sucesioes acotadas...

Más detalles

Una sucesión es un conjunto infinito de números ordenados de tal forma que se puede decir cuál es el primero, cuál el segundo, el tercero, etc.

Una sucesión es un conjunto infinito de números ordenados de tal forma que se puede decir cuál es el primero, cuál el segundo, el tercero, etc. Sucesioes Sucesi o. Ua sucesió es u cojuto ifiito de úmeros ordeados de tal forma que se puede decir cuál es el primero, cuál el segudo, el tercero, etc. Los térmios de ua sucesió se desiga mediate a 1,

Más detalles

Olimpiada Nacional de Matemática 2018 Fase Final - Nivel U. Soluciones

Olimpiada Nacional de Matemática 2018 Fase Final - Nivel U. Soluciones limpiada Nacioal de Matemática Fase Fial - Nivel U Solucioes Problema 1. Sea a y reales positivos. Se defie la curva l como y = ax y como el orige del plao cartesiao. Para u puto cualquiera P sobre la

Más detalles

Representaciones irreducibles y carácter de una representación: * = corresponde al elemento i,k de la matriz asociada a la

Representaciones irreducibles y carácter de una representación: * = corresponde al elemento i,k de la matriz asociada a la epresetacioes irucibles y carácter de ua represetació: Gra teorema de la ortooalidad (GTO): Sea y dos represetacioes irucibles de dimesioes, : ik ( ) jl ( ) = ( ) ij kl dode ik () correspode al elemeto

Más detalles

CAPITULO 0 CONCEPTOS BASICOS DE ALGEBRA Y PROGRAMACION LINEAL Algebra lineal Notación básica.

CAPITULO 0 CONCEPTOS BASICOS DE ALGEBRA Y PROGRAMACION LINEAL Algebra lineal Notación básica. 5 CAPIULO 0 CONCEPOS BASICOS DE ALGEBRA Y PROGRAMACION LINEAL Este capítulo proporcioa u pequeño resume acerca de coceptos básicos de álgebra y programació lieal que resulta fudametales para el bue etedimieto

Más detalles

Definición Diremos que el cardinal de un conjunto A es n si se puede establecer una

Definición Diremos que el cardinal de un conjunto A es n si se puede establecer una Tema 2 Combiatoria 2.1 Pricipios básicos de recueto 2.1.1 Cardial de u cojuto Defiició 2.1.1. Diremos que el cardial de u cojuto A es si se puede establecer ua biyecció f : {1,..., } A. Se deota A. Se

Más detalles

TAREA Profundizaciones. Problemas. Estructuras Matemáticas en Mecánica Cuántica MPG3433/FIM3403 Departamento de Matemática - Instituto de Física

TAREA Profundizaciones. Problemas. Estructuras Matemáticas en Mecánica Cuántica MPG3433/FIM3403 Departamento de Matemática - Instituto de Física Profesor: Giuseppe De Nittis Sala: 5 (Depto. Matemáticas) Fecha: 27/03/2017 Estructuras Matemáticas e Mecáica Cuática MPG3433/FIM3403 Departameto de Matemática - Istituto de Física TAREA - 02 Objetivos:

Más detalles

Teoremas de convergencia. Integral sobre... Convergencia... Convergencia...

Teoremas de convergencia. Integral sobre... Convergencia... Convergencia... covergecia este capítulo teemos como objetivo demostrar las propiedades más importates de la Itegral de Lebesgue. teemos que demostrar todavía las propiedades fudametales de liealidad y aditividad respecto

Más detalles

Aplicaciones Lineales. Diagonalización 1.- Sean xy

Aplicaciones Lineales. Diagonalización 1.- Sean xy Aplicacioes Lieales. Diagoalizació.- Sea xy, vectores propios de ua matriz A asociados al mismo valor propio. Etoces: a) x+ y tambié es vector propio de A. b) x+ y tambié es vector propio de A, si x +

Más detalles

Por P. Diaz Muñoz y M. Sánchez Marcos.

Por P. Diaz Muñoz y M. Sánchez Marcos. APLICACIONES DE LA INTERPOLACION A LA REPRESENTACION DE FUNCIONALES LINEALES SOBRE UN SUBESPACIO DE DIMENSION FINITA DE C (Q). Por P. Diaz Muñoz y M. Sáchez Marcos. 0.- INTRODUCCION Sea C(Q) el espacio

Más detalles

Prácticas de Matemáticas I y Matemáticas II con DERIVE-5 138

Prácticas de Matemáticas I y Matemáticas II con DERIVE-5 138 Prácticas de Matemáticas I y Matemáticas II co DERIVE-5 8. DIGONLIZCIÓN... PRINCIPLES FUNCIONES DE DERIVE PR L DIGONLIZCION: CLCULO DE UTOVLORES Y UTOVECTORES. tes de iiciar el estudio de los pricipales

Más detalles

Definición 13.1 Llamamos serie trigonométrica a una serie de funciones reales, de la forma. + n +ib n

Definición 13.1 Llamamos serie trigonométrica a una serie de funciones reales, de la forma. + n +ib n ema 3 Series de Fourier. Hemos visto, e el tema 8, que alguas fucioes reales puede represetarse mediate su desarrollo e serie de potecias, lo que sigifica que puede aproximarse mediate poliomios. Si embargo,

Más detalles

- Fernando Sánchez - Departamento de Matemáticas - Universidad de Extremadura

- Fernando Sánchez - Departamento de Matemáticas - Universidad de Extremadura - Ferado Sáchez - - 5 Números Cálculo I complejos 14 10 2015 E el cuerpo de los úmeros reales ecuacioes como x 2 + 1 = 0 o tiee solució: el poliomio x 2 + 1 o tiee raíces reales. Hace falta exteder el

Más detalles

Construcción de los números reales.

Construcción de los números reales. B Costrucció de los úmeros reales. E el cojuto C de las sucesioes de Cauchy de úmeros racioales defiimos la relació siguiete: si (x ) =1 e (y ) =1 so dos sucesioes de C etoces (x ) =1 (y ) =1, si lím (x

Más detalles

1 EXPRESIONES ALGEBRAICAS

1 EXPRESIONES ALGEBRAICAS EXPRESIONES ALGEBRAICAS E el leguaje matemático, se deomia expresioes algebraicas a toda combiació de letras y/o úmeros viculados etre si por las operacioes de suma, resta, multiplicació y poteciació de

Más detalles

Introducción a las Funciones Vectoriales (Funciones de R R n ) 1. Funciones de R en R n (Funciones Vectoriales)

Introducción a las Funciones Vectoriales (Funciones de R R n ) 1. Funciones de R en R n (Funciones Vectoriales) Itroducció a las Fucioes Vectoriales (Fucioes de R R 1 Fucioes de R e R (Fucioes Vectoriales Llamaremos fució vectorial de variable real o simplemete fució vectorial, a aquellas co domiio e u subcojuto

Más detalles

Prueba Integral Lapso / Área de Matemática Fecha: MODELO DE RESPUESTA (Objetivos del 01 al 11)

Prueba Integral Lapso / Área de Matemática Fecha: MODELO DE RESPUESTA (Objetivos del 01 al 11) Prueba Itegral Lapso 016-1 175-176-177 1/7 Uiversidad Nacioal Abierta Matemática I (Cód 175-176-177) Vicerrectorado Académico Cód Carrera: 16 36 80 508 51 54 610 611 61 613 Fecha: 19 11 016 MODELO DE RESPUESTA

Más detalles

DISCUSIÓN Y RESOLUCIÓN DE ECUACIONES LINEALES. TEOREMA DE ROUCHE. REGLA DE CRAMER. MÉTODO DE GAUSS-JORDAN

DISCUSIÓN Y RESOLUCIÓN DE ECUACIONES LINEALES. TEOREMA DE ROUCHE. REGLA DE CRAMER. MÉTODO DE GAUSS-JORDAN DISCUSIÓN Y RESOLUCIÓN DE ECUACIONES LINEALES. TEOREMA DE ROUCHE. REGLA DE CRAMER. MÉTODO DE GAUSS-JORDAN Ídice. INTRODUCCIÓN2 2. SISTEMAS DE ECUACIONES LINEALES2 Defiicioes básicas.2 Iterpretació vectorial3

Más detalles

Prácticas de Matemáticas I y Matemáticas II con DERIVE 136

Prácticas de Matemáticas I y Matemáticas II con DERIVE 136 Prácticas de Matemáticas I y Matemáticas II co DERIVE 6. DIGONLIZCIÓN... PRINCIPLES FUNCIONES DE DERIVE PR L DIGONLIZCION: CLCULO DE UTOVLORES Y UTOVECTORES. tes de iiciar el estudio de los pricipales

Más detalles

LOS NUMEROS REALES. Conjunto no vacío designado como R y denominado conjunto de los números reales. En

LOS NUMEROS REALES. Conjunto no vacío designado como R y denominado conjunto de los números reales. En LOS NUMEROS REALES Cojuto o vacío desigado como R y deomiado cojuto de los úmeros reales. E él se defie ua relació de igualdad = y dos operacioes algebraicas + y. Relació de igualdad Defiició: R = (a,b)

Más detalles

GUÍA DE ESTUDIO ÁLGEBRA LINEAL

GUÍA DE ESTUDIO ÁLGEBRA LINEAL GUÍ DE ESUDIO ÁLGER LINEL ema. Espacios Vectoriales ) LOS NÚMEROS El sistema de úmeros reales cosiste e u cojuto R de elemetos llamados úmeros reales y dos operacioes deomiadas: adició y multiplicació,

Más detalles

Tema 3.- Números Complejos.

Tema 3.- Números Complejos. Álgebra. 2004-2005. Igeieros Idustriales. Departameto de Matemática Aplicada II. Uiversidad de Sevilla. Tema 3.- Números Complejos. Los úmeros complejos. Operacioes. Las raíces de u poliomio real. Aplicacioes

Más detalles

Generalización del Algoritmo Cuántico de Teleportación

Generalización del Algoritmo Cuántico de Teleportación Geeralizació del Algoritmo Cuático de Teleportació Alejadro Díaz Caro Departameto de Ciecias de la Computació Facultad de Ciecias Exactas, Igeiería y Agrimesura Uiversidad Nacioal de Rosario, Argetia Resume

Más detalles

Convolución discreta cíclica

Convolución discreta cíclica Covolució discreta cíclica Estos aputes está escritos por Darío Coutiño Aquio y Egor Maximeko. Objetivos. Defiir la covolució discreta cíclica y demostrar el teorema sobre la covolució discreta cíclica

Más detalles

ECUACIONES DIFERENCIALES (0256)

ECUACIONES DIFERENCIALES (0256) ECUACIONES DIFERENCIALES (056) SEMANA 0 CLASE 0 LUNES 09/04/. Presetació de la asigatura. Coteido programático, pla de evaluació, software de apoyo, bibliografía recomedada. Se sugiere ver los archivos

Más detalles

Matemáticas Discretas

Matemáticas Discretas Matemáticas Discretas Fucioes (15) Curso Propedéutico 2009 Maestría e Ciecias Computacioales, INAOE Relacioes & Fucioes (2) Dr Luis Erique Sucar Succar esucar@iaoep.mx Dra Agélica Muñoz Melédez muoz@iaoep.mx

Más detalles

UNIDAD 9. PROBABILIDAD Matemáticas II. Ies do Barral.Curso 2017/ Experimentos aleatorios

UNIDAD 9. PROBABILIDAD Matemáticas II. Ies do Barral.Curso 2017/ Experimentos aleatorios 1. Experimetos aleatorios U experimeto se llama aleatorio cuado o se puede predecir su resultado; además, si se repitiese el mismo experimeto e codicioes aálogas, los resultados puede diferir. a) El resultado

Más detalles

UNIDAD 10.- DERIVADAS

UNIDAD 10.- DERIVADAS UNIDAD.- DERIVADAS. DERIVADA DE UNA EN UN PUNTO. DERIVADAS LATERALES Defiici.- Se llama derivada de ua fuci f ( e u puto de abscisa al siguiete ite si eiste: f ( f '( sigifica lo mismo. f (. Se suele represetar

Más detalles

TEMA VI: DISEÑO PROGRAMABLE

TEMA VI: DISEÑO PROGRAMABLE TEMA VI: DISEÑO PROGRAMABLE Cotiuado co los diferetes tipos de diseño, e el presete tema vamos a itroduciros e el deomiado diseño programable. Este uevo diseño apareció gracias a los cotiuos avaces e la

Más detalles

Trabajo Práctico N 10 Recursividad

Trabajo Práctico N 10 Recursividad Primer Cuatrimestre 0 Trabajo Práctico N 0 Recursividad Ejercicio. Implemete e Pascal las siguietes defiicioes recursivas. a) h ( N) h( N ) h( N ), N, N 0 0 b) 0 g (, y) 0 g(, y ), 0, y 0, 0 y 0 c) f (

Más detalles

Tenemos k objetos distintos para distribuir en n cajas distintas con

Tenemos k objetos distintos para distribuir en n cajas distintas con Departameto de Matemática Aplicada. ETSIIf. UPM. SELECCIONES ORDENADAS Teemos objetos distitos para distribuir e cajas distitas co de cuátas formas distitas se puede itroducir los objetos e las cajas,

Más detalles

Tema 3. Series de Fourier. Análisis de Espectros

Tema 3. Series de Fourier. Análisis de Espectros Tema 3. Series de Fourier. Aálisis de Espectros Idice: Series de Fourier Serie Trigoométrica de Fourier Aálisis gráfico. Primeras compoetes de frecuecia Ejemplo Serie de Fourier e forma de Expoeciales

Más detalles

1.-SUAVIZADORES DE RANGO DE ORDEN INTRODUCCIÓN

1.-SUAVIZADORES DE RANGO DE ORDEN INTRODUCCIÓN 1.-SUAVIZADORES DE RANGO DE ORDEN 1.1.- INTRODUCCIÓN Cosiderado que el "filtro mediaa" es o-lieal, el térmio "filtro, que ha sido implícitamete asociado co el cocepto de liealidad, es iapropiado. Quedaría

Más detalles

4.- Aproximación Funcional e Interpolación

4.- Aproximación Funcional e Interpolación 4- Aproximació Fucioal e Iterpolació 4 Itroducció Ua de las mayores vetajas de aproximar iformació discreta o fucioes complejas co fucioes aalíticas secillas, radica e su mayor facilidad de evaluació y

Más detalles

CAPÍTULO I. Conceptos Básicos de Estadística

CAPÍTULO I. Conceptos Básicos de Estadística CAPÍTULO I Coceptos Básicos de Estadística Capítulo I. Coceptos Básicos de Estadística. CAPÍTULO I CONCEPTOS BÁSICOS DE ESTADÍSTICA Para realizar estudios estadísticos es ecesario registrar la ocurrecia

Más detalles

ARITMÉTICA MODULAR. CONGRUENCIAS ENTERAS Carl Friedrich Gauss ( )

ARITMÉTICA MODULAR. CONGRUENCIAS ENTERAS Carl Friedrich Gauss ( ) CONGRUENCIAS ENTERAS Carl Friedrich Gauss (1777 1855) ARITMÉTICA MODULAR Defiició Sea m, a, b. a es cogruete co b módulo m si y sólo si ma b. a b (mód m) La relació de cogruecia es ua relació de equivalecia:

Más detalles

Probabilidad FENÓMENOS ALEATORIOS

Probabilidad FENÓMENOS ALEATORIOS Probabilidad FENÓMENOS ALEATORIOS E el mudo real hay feómeos regidos por leyes de tipo empírico (basadas e la experiecia), lógico o deductivo, e los que el efecto está determiado por ciertas causas. El

Más detalles

Frecuencia y probabilidad. Leyes del azar. Espacio probabilístico

Frecuencia y probabilidad. Leyes del azar. Espacio probabilístico Tema 63 Frecuecia y probabilidad. Leyes del azar. Espacio probabilístico 63. Itroducció E geeral, la Teoría de la robabilidad se ocupa de situacioes o modelos e los que está presete la icertidumbre. Llamaremos

Más detalles

CLAUSURA ALGEBRAICA Y NÚMEROS COMPLEJOS

CLAUSURA ALGEBRAICA Y NÚMEROS COMPLEJOS Clausura algebraica y úmeros complejos CLAUSURA ALGEBRAICA Y NÚEROS COPLEJOS. Itroducció Nos pregutamos Porqué o podemos resolver ciertas ecuacioes poliómicas e u determiado campo de úmeros?. Geeralmete,

Más detalles

Combinatoria. Tema Principios básicos de recuento

Combinatoria. Tema Principios básicos de recuento Tema 4 Combiatoria La combiatoria, el estudio de las posibles distribucioes de objetos, es ua parte importate de la matemática discreta, que ya era estudiada e el siglo XVII, época e la que se platearo

Más detalles

Fórmula de Taylor. Si f es continua en [a,x y derivable en (a,x), existe c (a,x) tal que f(x) f(a) f '(c) f(x) f(a) f '(c)(x a)

Fórmula de Taylor. Si f es continua en [a,x y derivable en (a,x), existe c (a,x) tal que f(x) f(a) f '(c) f(x) f(a) f '(c)(x a) Aproimació de ua fució mediate u poliomio Cuado y=f tiee ua epresió complicada y ecesitamos calcular los valores de ésta, se puede aproimar mediate fucioes secillas (poliómicas). El teorema del valor medio

Más detalles

Álgebra de Boole. Adición booleana. Multiplicación booleana. Escuela Politécnica Superior

Álgebra de Boole. Adición booleana. Multiplicación booleana. Escuela Politécnica Superior Álgebra de Boole El Álgebra de Boole es una forma muy adecuada para expresar y analizar las operaciones de los circuitos lógicos. Se puede considerar las matemáticas de los sistemas digitales. Operaciones

Más detalles

Un sistema de m ecuaciones lineales con n incógnitas es un conjunto de m igualdades del tipo:......

Un sistema de m ecuaciones lineales con n incógnitas es un conjunto de m igualdades del tipo:...... 1. Sistemas de m ecuacioes lieales co icógitas U sistema de m ecuacioes lieales co icógitas es u cojuto de m igualdades del tipo: a11x 1 a1 x... a1 x b1 a1x1 ax... ax b (1)... am1x1 amx... amx bm Los úmeros

Más detalles

Negativos: 3, 2, 1 = 22. ab/c 11 Æ 18

Negativos: 3, 2, 1 = 22. ab/c 11 Æ 18 Los úmeros reales.. Los úmeros reales El cojuto de los úmeros reales está formado por los úmeros racioales y los irracioales. Se represeta por la letra Los úmeros racioales so los úmeros eteros, los decimales

Más detalles

AMPLIACIÓN DE MATEMÁTICAS Ingeniería Técnica Industrial. Especialidad en Electrónica Industrial Boletín n o 7

AMPLIACIÓN DE MATEMÁTICAS Ingeniería Técnica Industrial. Especialidad en Electrónica Industrial Boletín n o 7 AMPLIACIÓN DE MATEMÁTICAS Igeiería Técica Idustrial. Especialidad e Electróica Idustrial Boletí o 7. Dibujar las gráficas y hallar el desarrollo e serie de Fourier de las siguietes fucioes periódicas de

Más detalles

Los vectores desempeñan un papel importante en Matemáticas, Física e Ingeniería y actualmente en materias como procesamiento de imágenes.

Los vectores desempeñan un papel importante en Matemáticas, Física e Ingeniería y actualmente en materias como procesamiento de imágenes. ESPACIOS VECTORIALES 1. INTRODUCCIÓN Escalares y Vectores E la técica existe catidades como Logitud, Área, Volume, Temperatura, Presió, Masa, Potecial, Carga eléctrica que se represeta por u úmero real.

Más detalles

valor absoluto de sus términos, se tiene la serie: que si es convergente, entonces también es convergente la serie alternada.

valor absoluto de sus términos, se tiene la serie: que si es convergente, entonces también es convergente la serie alternada. (Aputes e revisió para orietar el apredizaje) CONVERGENCIA ABSOLUTA TEOREMA. Si e la serie alterada ( ) valor absoluto de sus térmios, se tiee la serie: a + a + + a + a se toma el = que si es covergete,

Más detalles

Capítulo VARIABLES ALEATORIAS

Capítulo VARIABLES ALEATORIAS Capítulo VI VARIALES ALEATORIAS. Itroducció Detro de la estadística se puede cosiderar dos ramas perfectamete difereciadas por sus objetivos y por los métodos que utiliza: Estadística Descriptiva o Deductiva

Más detalles

Unidad 1: Las Ecuaciones Diferenciales y Sus Soluciones

Unidad 1: Las Ecuaciones Diferenciales y Sus Soluciones Uidad : Las Ecuacioes Difereciales y Sus Solucioes. Itroducció. Tato e las ciecias como e las igeierías se desarrolla modelos matemáticos para compreder mejor los feómeos físicos. Geeralmete, estos modelos

Más detalles

FUNCIONES. ( a) IGUALDAD DE FUNCIONES Sí y son dos funciones, diremos que las funciones f y

FUNCIONES. ( a) IGUALDAD DE FUNCIONES Sí y son dos funciones, diremos que las funciones f y CALCULO P.C.I. PRIMER SEMESTRE 04 FUNCIONES Sí A y B so dos cojutos o vacío, ua fució de A e B asiga a cada elemeto a perteeciete al cojuto A u úico elemeto b de B que deomiamos image de a. Además diremos

Más detalles

Curso: 3 E.M. ALGEBRA 8

Curso: 3 E.M. ALGEBRA 8 Colegio SSCC Cocepció - Depto. de Matemáticas Uidad de Apredizaje: POLINOMIOS Capacidades/Destreza/Habilidad: Racioamieto Matemático/ Aplicació / Calcular, Resolver Valores/ Actitudes: Respeto, Solidaridad,

Más detalles

Clases 9-10: El proceso de Wiener y los paseos al azar: el teorema de Donsker *

Clases 9-10: El proceso de Wiener y los paseos al azar: el teorema de Donsker * Clases 9-10: El proceso de Wieer y los paseos al azar: el teorema de Dosker * 6 de oviembre de 2017 Ídice 1. Itroducció 1 2. Paseos al azar 1 3. Paseo al azar co variables gaussiaas 2 4. Paseo al azar

Más detalles

MÉTODOS MATEMÁTICOS ESPACIOS DE HILBERT Y OPERADORES LINEALES. Profesora: Mª Cruz Boscá TEMA 2: ESPACIOS EUCLÍDEOS Y DE HILBERT

MÉTODOS MATEMÁTICOS ESPACIOS DE HILBERT Y OPERADORES LINEALES. Profesora: Mª Cruz Boscá TEMA 2: ESPACIOS EUCLÍDEOS Y DE HILBERT ÉTODOS ATEÁTICOS ESPACIOS DE HILBERT Y OPERADORES LINEALES Profesora: ª Cruz Boscá TEA : ESPACIOS EUCLÍDEOS Y DE HILBERT Sea u espacio lieal L (X, +, ) sobre el cuerpo k Producto itero o escalar y espacio

Más detalles

Series de potencias. Desarrollos en serie de Taylor

Series de potencias. Desarrollos en serie de Taylor Capítulo 9 Series de potecias. Desarrollos e serie de Taylor E la represetació (e icluso e la costrucció) de fucioes, desempeña u papel especialmete destacado cierto tipo de series, deomiadas series de

Más detalles

Procesadores aritméticos. Ejercicios

Procesadores aritméticos. Ejercicios UNIVERSITAT POLITÈCNICA DE CATALUNYA ESCOLA UNIVERSITÀRIA POLITÈCNICA DE VILANOVA I LA GELTRÚ Procesadores aritméticos. Ejercicios DEPARTAMENT: Arquitectura de Computadors ESPECIALITAT: Iformàtica de Gestió

Más detalles

1. Secuencia Impulso unitario (función Kroëneker) 1, n = n 0. (n) = = {... 0, 0, (1), 0, 0,... }

1. Secuencia Impulso unitario (función Kroëneker) 1, n = n 0. (n) = = {... 0, 0, (1), 0, 0,... } SEÑALES DE TIEMPO DISCRETO SEÑALES Y SISTEMAS DE TIEMPO DISCRETO Las señales está clasificadas de maera amplia, e señales aalógicas y señales discretas. Ua señal aalógica será deotada por a t e la cual

Más detalles

EJERCICIOS DE RECURRENCIA

EJERCICIOS DE RECURRENCIA EJERCICIOS DE RECURRENCIA (co alguas solucioes) Resolver la recurrecia = 5 6 =, = y tambié ésta: = =, = Resolvamos la primera E primer lugar otamos que es ua recurrecia lieal, pues pasado todos los térmios

Más detalles

Semana 10 [1/24] Sucesiones (II) 2 de mayo de Sucesiones (II)

Semana 10 [1/24] Sucesiones (II) 2 de mayo de Sucesiones (II) Semaa 0 [/24] 2 de mayo de 2007 Sadwich de sucesioes Semaa 0 [2/24] Límites y Orde. Teorema Sea u ) y w ) sucesioes covergetes a u y w, respectivamete. Si 0 tal que para 0 se cumple que etoces u w. u w

Más detalles

Notas de Teórico. Sistemas de Numeración

Notas de Teórico. Sistemas de Numeración Departameto de Arquitectura Istituto de Computació Uiversidad de la República Motevideo - Uruguay Sistemas de umeració Arquitectura de Computadoras (Versió 4.3b - 6) SISTEMAS DE UMERACIÓ. Itroducció E

Más detalles

T ema 6 DISTRIBUCIONES DISCRETAS DE PROBABILIDAD. x 1. x 2 = 1 = 2. x 3 = 3. x 4. Variable aleatoria: definición y tipos:

T ema 6 DISTRIBUCIONES DISCRETAS DE PROBABILIDAD. x 1. x 2 = 1 = 2. x 3 = 3. x 4. Variable aleatoria: definición y tipos: T ema 6 DISTRIBUCIONES DISCRETAS DE PROBABILIDAD Variable aleatoria: defiició y tipos: Ua variable aleatoria es ua fució que asiga u úmero real, y sólo uo, a cada uo de los resultados de u eperimeto aleatorio.

Más detalles

(a) x +0 = x. (a) x + x' = 1. (a) x + x = x. (a) x + 1 = 1. (x')' = x. (a) x + y = y + x. (a) x + (y + z) = (x + y) + z. (a) x (y + z) = x y + x z

(a) x +0 = x. (a) x + x' = 1. (a) x + x = x. (a) x + 1 = 1. (x')' = x. (a) x + y = y + x. (a) x + (y + z) = (x + y) + z. (a) x (y + z) = x y + x z PRACTICA # 2. SIMPLIFICACIÓN DE FUNCIONES Y COMPUERTAS LÓGICAS. Maxter. LABORATORIO DE SISTEMAS DIGITALES PRACTICA # 2. SIMPLIFICACIÓN DE FUNCIONES Y COMPUERTAS LÓGICAS. INTRODUCCIÓN. El álgebra booleana,

Más detalles

Series de Fourier Aplicación: Análisis de Señales

Series de Fourier Aplicación: Análisis de Señales Series de Fourier Aplicació: Aálisis de Señales Jua E Dombald Estudiate de Igeiería Electróica Uiversidad Nacioal del Sur, Avda Alem 53, B8CPB Bahía Blaca, Argetia Juae_ce@hotmailcom Agosto Resume: E este

Más detalles

TEORÍA DE CÁLCULO I. Para Grados en Ingeniería. Capítulo 3: Sucesiones y series. Domingo Pestana Galván José Manuel Rodríguez García

TEORÍA DE CÁLCULO I. Para Grados en Ingeniería. Capítulo 3: Sucesiones y series. Domingo Pestana Galván José Manuel Rodríguez García TEORÍA DE CÁLCULO I Para Grados e Igeiería Capítulo 3: Sucesioes y series Domigo Pestaa Galvá José Mauel Rodríguez García Figuras realizadas co Arturo de Pablo Martíez TEMA 3. Sucesioes y series 3. Sucesioes

Más detalles

FUNCIONES DE VARIAS VARIABLES: DOMINIO, RANGO, CURVAS DE NIVEL 1 FUNCIONES DE VARIAS VARIABLES.

FUNCIONES DE VARIAS VARIABLES: DOMINIO, RANGO, CURVAS DE NIVEL 1 FUNCIONES DE VARIAS VARIABLES. FUNCIONES DE VARIAS VARIABLES: DOMINIO, RANGO, CURVAS DE NIVEL FUNCIONES DE VARIAS VARIABLES. DEFINICIONES DE FUNCIONES EN VARIAS VARIABLES. Ua fució de variable es u cojuto de pares ordeados de la forma

Más detalles

Cálculo. 1 de septiembre de Cuestiones

Cálculo. 1 de septiembre de Cuestiones Cálculo. de septiembre de 005 Cuestioes. Si ua fució f(x, y) es cotiua e (0, 0), etoces: a) f(0, 0) = 0. b) f(x, y) = 0. (x,y) (0,0) c) f es difereciable e (0,0). d) igua de las ateriores. Si ua fució

Más detalles

INTERÉS SIMPLE COMO FUNCIÓN LINEAL.

INTERÉS SIMPLE COMO FUNCIÓN LINEAL. INTERÉS SIMPLE COMO FUNCIÓN LINEAL. EJERCICIOS PROPUESTOS. 1.- Grafica las fucioes Moto e Iterés: a) C = + 0, co C e miles de pesos ; : meses y R. Para graficar estar fucioes, debemos dar valores a, por

Más detalles

INFERENCIA ESTADÍSTICA CONCEPTOS BÁSICOS

INFERENCIA ESTADÍSTICA CONCEPTOS BÁSICOS INFERENCIA ESTADÍSTICA CONCEPTOS BÁSICOS Població E el cotexto de la estadística, ua població es el cojuto de todos los valores que puede tomar ua característica medible e particular, de u cojuto correspodiete

Más detalles

Evaluación NOMBRE APELLIDOS CURSO Y GRUPO FECHA CALIFICACIÓN. 9. Límite y continuidad

Evaluación NOMBRE APELLIDOS CURSO Y GRUPO FECHA CALIFICACIÓN. 9. Límite y continuidad Evaluació NOMBRE APELLIDOS CURSO GRUPO FECHA CALIFICACIÓN Calcula el térmio geeral de ua progresió geométrica que tiee de térmio a y por razó /. a) b) c) El 6 es: a) b) 0 c) / 6 7 El es: a) b) c) 0 El

Más detalles

Laboratorio N 10, Series de Fourier. Introducción. Para funciones ( ) cos. f x está definida en la mitad del intervalo

Laboratorio N 10, Series de Fourier. Introducción. Para funciones ( ) cos. f x está definida en la mitad del intervalo Uiversidad Diego Portales Facultad de Igeiería Istituto de Ciecias Básicas Asigatura: Ecuacioes Difereciales aboratorio N 1, Series de Fourier Itroducció Para fucioes x,, la serie de Fourier f x cotiuas

Más detalles

a n = Ejemplo: Representa las gráficas de las funciones f(x) = 1/x, g(x) = x 2 y h(x) =

a n = Ejemplo: Representa las gráficas de las funciones f(x) = 1/x, g(x) = x 2 y h(x) = TEMA 9: LÍMITE Y CONTINUIDAD DE UNA FUNCIÓN. 9. Cocepto de límite lateral. Límite. 9. Operacioes co fucioes covergetes. 9.3 Cálculo de límites. 9.4 Cotiuidad de ua fució. 9.5 Asítotas: Verticales, horizotales

Más detalles

Sesión No. 6. Contextualización. Nombre: Funciones exponenciales y logarítmicas y el uso de las MATEMÁTICAS. progresiones aritméticas y geométricas.

Sesión No. 6. Contextualización. Nombre: Funciones exponenciales y logarítmicas y el uso de las MATEMÁTICAS. progresiones aritméticas y geométricas. Matemáticas Sesió No. 6 Nombre: Fucioes expoeciales y logarítmicas y el uso de las progresioes aritméticas y geométricas. Cotextualizació Las fucioes expoeciales y logarítmicas se les cooce como trascedetes,

Más detalles