PRÁCTICA 9. DISTRIBUCIÓN DE LA PRESIÓN EN TOBERAS CONVERGENTES Y DIVERGENTES

Tamaño: px
Comenzar la demostración a partir de la página:

Download "PRÁCTICA 9. DISTRIBUCIÓN DE LA PRESIÓN EN TOBERAS CONVERGENTES Y DIVERGENTES"

Transcripción

1 PRÁCTICA 9. DISTRIBUCIÓN DE LA PRESIÓN EN TOBERAS CONVERGENTES Y DIVERGENTES OBJETIVO GENERAL: Familiarizar al alumno con el análisis, operación y funcionamiento de toberas para flujo compresible. OBJETIVOS ESPECÍFICOS: Calibración de toberas para medición de flujo compresible. Medición de distribución de presiones de toberas Reconocimiento de flujo subsónico y supersónico y de onda de choque. A) EQUIPO: Distribuidor de presión en toberas Gunt HM 261 y compresor de aire Rangos de medición: Fig. 1 Distribuidor de presión en toberas Gunt HM 261 o Temperatura: de 0 a 50 C (por termoelemento K) o Presión: 2 manómetros de 0 a 10 bar; 8 manómetros de 1 a 9 bar o Caudal másico de aire: de 0,7 a 8,3 g/s o Regulador de presión: de 0 a 12 bar 1

2 B) INTRODUCCIÓN TEÓRICA El número de Mach (Ma) es un número adimensional definido como la relación entre la velocidad del flujo c y la velocidad local del sonido en el gas a. A partir de ésta se obtiene la ecuación 1 : Si la velocidad del flujo es supersónica (Ma > 1) un cambio en el área de paso del flujo en una dirección tiene como efecto un cambio de la velocidad en la misma dirección y un cambio de la presión en la dirección opuesta. Por lo tanto, si A aumenta, la velocidad c también aumenta y la presión disminuye. Si A disminuye, la velocidad disminuye y la presión aumenta. Para un flujo con velocidad subsónica (Ma <1) la densidad y el área de la sección varían en la misma dirección, mientras para uno con velocidad supersónica éstos varían en direcciones opuestas. subsónica Ma <1 da>0 dc<0 dp>0 supersónica Ma>1 da>0 dc>0 dp<0 subsónica Ma <1 da<0 dc>0 dp<0 supersónica Ma>1 da<0 dc<0 dp>0 Onda de choque: aparece cuando el flujo sufre un cambio brusco en su cantidad de movimiento: pasa instantáneamente de una velocidad supersónica a una subsónica 1. 1 J. Agüera, Termodinámica Lógica y Motores Térmicos -6 ED. Ed. Ciencia, Pág. 199 y 233 2

3 Fig. 2 Fotografía de una tobera en condiciones de ondas de choque normal en el interior Fig. 3 Representación esquematica del dispositivo C) PROCEDIMIENTO DE OPERACIÓN: Descripción de la instalación de laboratorio Instalar la tobera asignada (modelo A, B o C) Fijar una presión de entrada constante p i =6 bar Modificar la presión de salida p o en cada uno de los ensayos así como el resto de valores requeridos en la tabla 1. 2 Medir en cada situación (ver tabla 1): o La presión en cada sección de la tobera 2 Los que trabajen con la tobera de tipo A deberán medir hasta la presión nº 5. 3

4 o La temperatura de entrada y de salida T i y T o o El flujo del aire Cuidado: La medición tiene que ser rápida para evitar que no baje la presión a la entrada. Después de cada ensayo es importante cerrar el suministro de aire y garantizar una presión en el compresor superior a los 9 bares antes de empezar nuevas mediciones. D) INFORME Calculad la presión, temperatura y velocidad criticas Representad la tobera en un grafico p-x (x es la longitud de la tobera), en papel milimetrado, según se muestra en el ejemplo de la Figura 2, incluyendo: o Los valores de presión leídos en cada uno de los ensayos o La presión critica Contestad las siguientes preguntas: o Para qué valores de presión de salida el flujo sufre una libre expansión? o Define las situaciones donde la velocidad del flujo es supersónica y dónde es subsónica. o Indica gráficamente (aproximadamente, sin calcular) si aparece y donde (en caso afirmativo) la onda de choque en cada uno de los ensayos. Es posible que el flujo pase de una velocidad subsónica a una supersónica? Indica cuándo y por qué. o En qué ensayo(s) las condiciones en el cuello de la tobera pueden considerarse críticas? o En qué ensayo(s) (si se verifica) la velocidad del flujo en el cuello se hace subsónica? o Durantes los ensayos hay cambios de flujo másico? En caso de que la respuesta sea afirmativa, indica cuándo y por qué. 4

5 E) FORMULAS A USAR Del formulario: Valores críticos. Ecuaciones: (5.30) ; (5.31) ; (5.32) ; (5.33) ; (5.34) ; (5.35) ; (5.36). Donde: γ = 1,4 (Aire) A = Área de la sección de la tobera Ma = Número de Match c = a = Velocidad del sonido en el gas p i = presión a la entrada de la tobera (en el formulario está como p 1 ) p o = presión a la salida de la tobera p n = presión en el punto n de sección de la tobera p c = presión crítica d = Diámetro de la sección de la tobera = Caudal másico ρ i = Densidad del aire a la entrada (en el formulario como ρ 1 ) ρ o = Densidad del aire a la salida ρ c = densidad del aire en el punto crítico T i = Temperatura del gas a la entrada (en el formulario como T 1 ) T o = Temperatura del gas a la salida Tc = Temperatura del gas en el punto crítico v i = Volumen específico a la entrada (en el formulario como v 1) v a = Volumen específico en el punto crítico Se supone que no hay rozamiento. Nota: presiones en bar, densidades en kg/m 3, temperatura en ºC, velocidad en m/s, caudal másico en kg/s 5

6 Tabla 1. Datos para la experiencia de laboratorio. Departamento de Química Física y Termodinámica Aplicada N p i p o T i T o p 1 p 2 p 3 p 4 p 5 p 6 p 7 p 8 ρ i ρ c c c bar bar C C bar bar bar bar bar bar bar bar kg/s kg/m 3 kg/m 3 m/s d 3 mm A mm Buscar los diámetros en el diagrama ilustrado en el equipo de sobremesa, relativo al tipo de tobera utilizado. Modelo A, B o C. 6

7 Figura 2. Representación gráfica de la tobera tipo B. 7

Termodinámica y Termotecnia

Termodinámica y Termotecnia Termodinámica y Termotecnia Tema 05. Flujo Compresible Inmaculada Fernández Diego Severiano F. Pérez Remesal Carlos J. Renedo Estébanez DPTO. DE INGENIERÍA ELÉCTRICA Y ENERGÉTICA Este tema se publica bajo

Más detalles

Técnicas de medición de flujo: Medidor de Flujo Sónico Mediante Agujeros Calibrados

Técnicas de medición de flujo: Medidor de Flujo Sónico Mediante Agujeros Calibrados Técnicas de medición de flujo: Medidor de Flujo Sónico Mediante Agujeros Calibrados Fecha: Septiembre 2 de 2016 Hora: 16:00-18:00 Aula: 3-101 Edisson Steven Castaño Mesa Contenido Objetivo Historia y Fundamentos

Más detalles

PRÁCTICA 3F. CALIBRACIÓN DE MEDIDORES DE FLUJO VOLUMÉTRICO. unidad de tiempo, pasa a través de determinada sección transversal.

PRÁCTICA 3F. CALIBRACIÓN DE MEDIDORES DE FLUJO VOLUMÉTRICO. unidad de tiempo, pasa a través de determinada sección transversal. PRÁCTICA 3F. CALIBRACIÓN DE MEDIDORES DE FLUJO VOLUMÉTRICO A.- Objetivo Calibrar los siguientes medidores de flujo volumétrico: placa orificio, tobera y venturi, mediante el cálculo de los coeficientes

Más detalles

Ondas elásticas.golpe de ariete. Flujo subsónico y supersónico.

Ondas elásticas.golpe de ariete. Flujo subsónico y supersónico. FLUJO COMPRESIBLE Ondas elásticas.golpe de ariete. Flujo subsónico y supersónico. ONDAS ELASTICAS Si se produce una perturbación en un fluido ésta se manifiesta como una variación de presión que se propaga

Más detalles

Diversos tipos de toberas

Diversos tipos de toberas Diversos tipos de toberas Descarga de un gas ideal de un recipiente con alta presión a otro recipiente con baja presión Tobera convergente Si la descarga se realiza utilizando una tobera convergente entonces

Más detalles

R para el aire es 53.3 lb-ft/lb R en el sistema inglés, o 29.2 N m/n K.

R para el aire es 53.3 lb-ft/lb R en el sistema inglés, o 29.2 N m/n K. Flujo de gases Si el cambio en la presión es menor a aproximadamente el 10% de la presión de entrada, las variaciones en peso específico tendrán un efecto insignificante. Cuando la caída de presión se

Más detalles

ACCEDE - INGENIERÍA AERONÁUTICA PROBLEMA Nº 3

ACCEDE - INGENIERÍA AERONÁUTICA PROBLEMA Nº 3 MINISTERIO DE EDUCCIÓN - RGENTIN CCEDE - INGENIERÍ ERONÁUTIC PROBLEM Nº 3 SITUCIÓN Una cámara de vacío aspira aire de la atmósfera a través de una tobera convergente-divergente, como se muestra en la figura

Más detalles

Dinámica de los Gases I - 1er Parcial Resuelto. Ec. IV.2.3. Eso es así porque el caudal a lo largo del túnel se mantiene constante.

Dinámica de los Gases I - 1er Parcial Resuelto. Ec. IV.2.3. Eso es así porque el caudal a lo largo del túnel se mantiene constante. inámica de los Gases I - er Parcial 03 - Resuelto Problema ( punto): Explicar como deberá ser el área en la garganta del difusor de un túnel supersónico, con respecto al área de garganta de la tobera,

Más detalles

Ondas de Choque en Toberas

Ondas de Choque en Toberas José Luis Rodríguez, Ph.D., Marzo del 004 1 Ondas de Choque en Toberas Características de una tobera conergente-diergente cuando se presentan las ondas de choque. Figura 1 Punto d: P E P B y se ha mantenido

Más detalles

Flujo Compresible. h 0 = h + V 2 2. Es el estado alcanzado despues de una desaceleración hasta velocidad cero, pero con irreversibilidades asociadas.

Flujo Compresible. h 0 = h + V 2 2. Es el estado alcanzado despues de una desaceleración hasta velocidad cero, pero con irreversibilidades asociadas. José Luis odríguez, Ph.D., Marzo del 004 1 Flujo Compresible 1 Propiedades de Estancamiento: 1.1 Estado de estancamiento isoentrópico Es el estado que alcanzaría un uido en movimiento si experimenta una

Más detalles

INDICE. Capitulo I. Introducción

INDICE. Capitulo I. Introducción INDICE Capitulo I. Introducción I 1.1. La mecánica de fluidos en la ingeniera 1 1.2. Los fluidos y la hipótesis del continuo 22 1.2.1. El modelo del continuo 4 1.3. Propiedades de los fluidos 1.3.1. Densidad,

Más detalles

LABORATORIO DE TERMODINÁMICA

LABORATORIO DE TERMODINÁMICA LABORATORIO DE TERMODINÁMICA CURSO 2012-2013 PRÁCTICA 2: COEFICIENTE ADIABÁTICO 1 Grupo: V15S2M1 Adrián Jorge Pérez de Muniain Pérez Félix Pastor Álvarez Juan Antonio Pámpano Ruiz Illán Pintado González

Más detalles

II.4. FLUJO COMPRESIBLE.

II.4. FLUJO COMPRESIBLE. 1 UNIVERSIDAD DE OVIEDO Escuela Politécnica Superior de Ingeniería de Gijón Ingenieros Industriales Curso 008-009 Apuntes de Mecánica de Fluidos: ª parte II.4. FLUJO COMPRESIBLE. Condensación del vapor

Más detalles

12º CONGRESO IBEROAMERICANO DE INGENIERÍA MECÁNICA Guayaquil, 10 a 13 de Noviembre de 2015

12º CONGRESO IBEROAMERICANO DE INGENIERÍA MECÁNICA Guayaquil, 10 a 13 de Noviembre de 2015 12º CONGRESO IBEROAMERICANO DE INGENIERÍA MECÁNICA Guayaquil, 10 a 13 de Noviembre de 2015 ANÁLISIS DE MEZCLADORES AIRE-GAS COMBUSTIBLE EN UN QUEMADOR DE PREMEZCLA DOMÉSTICO Freddy J. Rojas Chávez, Fernando

Más detalles

El análisis de las curvas de Fanno se refiere a un flujo adiabático isoentrópico en un ducto de área constante.

El análisis de las curvas de Fanno se refiere a un flujo adiabático isoentrópico en un ducto de área constante. Líneas de Fanno. El análisis de las curvas de Fanno se refiere a un flujo adiabático isoentrópico en un ducto de área constante. Los principios que rigen el estudio de las curvas de Fanno se derivan de

Más detalles

PRÁCTICA 10. TORRE DE REFRIGERACIÓN POR AGUA

PRÁCTICA 10. TORRE DE REFRIGERACIÓN POR AGUA PRÁCTICA 10. TORRE DE REFRIGERACIÓN POR AGUA OBJETIVO GENERAL: Familiarizar al alumno con los sistemas de torres de refrigeración para evacuar el calor excedente del agua. OBJETIVOS ESPECÍFICOS: Investigar

Más detalles

IX.- PERDIDAS EN LA CÁMARA DE COMBUSTIÓN Y EN LOS ALABES

IX.- PERDIDAS EN LA CÁMARA DE COMBUSTIÓN Y EN LOS ALABES IX.- PERDIDAS EN LA CÁMARA DE COMBUSTIÓN Y EN LOS ALABES IX.1.- PERDIDAS DE CARGA EN LA CÁMARA DE COMBUSTIÓN Las pérdidas da carga que se producen en la cámara de combustión pueden ser: a) Pérdidas hidráulicas

Más detalles

PRÁCTICA Nº 5. MEDIDORES DE FLUJO PARA FLUIDOS COMPRESIBLES

PRÁCTICA Nº 5. MEDIDORES DE FLUJO PARA FLUIDOS COMPRESIBLES República bolivariana de Venezuela La Universidad del Zulia Facultad de Ingeniería Escuela de Ingeniería Química Laboratorio de Operaciones Unitarias I PRÁCTICA Nº 5. MEDIDORES DE FLUJO PARA FLUIDOS COMPRESIBLES

Más detalles

1. OBJETO PRINCIPIOS DE CÁLCULO CONDICIONES DE DISEÑO RESULTADOS... 8

1. OBJETO PRINCIPIOS DE CÁLCULO CONDICIONES DE DISEÑO RESULTADOS... 8 ÍNDICE 1. OBJETO... 2 2. PRINCIPIOS DE CÁLCULO... 3 3. CONDICIONES DE DISEÑO... 7 4. RESULTADOS... 8 Página 1 de 8 1. OBJETO Esta memoria justificativa da respuesta a los diámetros utilizados en las tuberías

Más detalles

ESCUELA SUPERIOR DE INGENIEROS INDUSTRIALES Universidad de Navarra

ESCUELA SUPERIOR DE INGENIEROS INDUSTRIALES Universidad de Navarra ESCUEL SUPERIOR DE INGENIEROS INDUSTRILES Universidad de Navarra Examen de TERMODINÁMIC I Curso 1997-98 Troncal - 4,5 créditos 11 de septiembre de 1998 Instrucciones para el examen de TEST: Cada pregunta

Más detalles

PRÁCTICA 2: DETERMINACIÓN DE PÉRDIDAS POR FRICCIÓN EN UN SISTEMA DE TUBERÍAS

PRÁCTICA 2: DETERMINACIÓN DE PÉRDIDAS POR FRICCIÓN EN UN SISTEMA DE TUBERÍAS Universidad Nacional Experimental Francisco de Miranda Área de Tecnología Programa de Ingeniería Química Departamento de Energética Laboratorio de Operaciones Unitarias I PRÁCTICA : DETERMINACIÓN DE PÉRDIDAS

Más detalles

TEMA II.10. Gasto o Caudal. Dr. Juan Pablo Torres-Papaqui. Departamento de Astronomía Universidad de Guanajuato DA-UG (México)

TEMA II.10. Gasto o Caudal. Dr. Juan Pablo Torres-Papaqui. Departamento de Astronomía Universidad de Guanajuato DA-UG (México) TEMA II.10 Gasto o Caudal Dr. Juan Pablo Torres-Papaqui Departamento de Astronomía Universidad de Guanajuato DA-UG (México) papaqui@astro.ugto.mx División de Ciencias Naturales y Exactas, Campus Guanajuato,

Más detalles

Lo que se debe aprender a hacer se aprende haciéndolo. Aristóteles.

Lo que se debe aprender a hacer se aprende haciéndolo. Aristóteles. TERMODINÁMICA Departamento de Física Carreras: Ing. Industrial y Mecánica Trabajo Práctico N 4: PRIMER PRINCIPIO Lo que se debe aprender a hacer se aprende haciéndolo. Aristóteles. 1) Se enfría a volumen

Más detalles

VII.- PERDIDAS EN LA CÁMARA DE COMBUSTIÓN Y EN LOS ALABES

VII.- PERDIDAS EN LA CÁMARA DE COMBUSTIÓN Y EN LOS ALABES VII.- PERDIDAS EN LA CÁMARA DE COMBUSTIÓN Y EN LOS ALABES VII.1.- PERDIDAS DE CARGA EN LA CÁMARA DE COMBUSTIÓN Las pérdidas da carga que se producen en la cámara de combustión pueden ser: - Pérdidas hidráulicas

Más detalles

Termodinámica y Termotecnia

Termodinámica y Termotecnia Termodinámica y Termotecnia Tema 00. Presentación de la Asignatura Inmaculada Fernández Diego Severiano F. Pérez Remesal Carlos J. Renedo Estébanez DPTO. DE INGENIERÍA ELÉCTRICA Y ENERGÉTICA Este tema

Más detalles

INTRODUCCIÓN Repaso de conceptos de la clase anterior. OBJETIVOS DE LA CLASE DESARROLLO CONCLUSIONES

INTRODUCCIÓN Repaso de conceptos de la clase anterior. OBJETIVOS DE LA CLASE DESARROLLO CONCLUSIONES Capítulo X: Flujos Compresibles Estacionarios: Segunda Parte INTRODUCCIÓN Repaso de conceptos de la clase anterior. OBJETIVOS DE LA CLASE DESARROLLO Flujo adiabático con fricción en un conducto de sección

Más detalles

TPT. Unidad de Distribución de Presión en Toberas DIAGRAMA DEL PROCESO Y DISPOSICIÓN DE LOS ELEMENTOS DEL EQUIPO

TPT. Unidad de Distribución de Presión en Toberas DIAGRAMA DEL PROCESO Y DISPOSICIÓN DE LOS ELEMENTOS DEL EQUIPO Equipamiento Didáctico para la Educación Técnica e Ingeniería Unidad de Distribución de Presión en Toberas TPT DIAGRAMA DEL PROCESO Y DISPOSICIÓN DE LOS ELEMENTOS DEL EQUIPO ISO 9001: Gestión de Calidad

Más detalles

EXPERIENCIA C917 "LABORATORIO DE VENTILADOR CENTRÍFUGO"

EXPERIENCIA C917 LABORATORIO DE VENTILADOR CENTRÍFUGO INGENIERIA CIVIL EN MECANICA PROGRAMA DE PROSECUCIÓN DE ESTUDIOS GUIA DE LABORATORIO ASIGNATURA "LABORATORIO DE MÁQUINAS HIDRÁULICAS" CÓDIGO 9517 NIVEL 04 EXPERIENCIA C917 "LABORATORIO DE VENTILADOR CENTRÍFUGO"

Más detalles

Problema 1. Problema 2

Problema 1. Problema 2 Problemas de clase, octubre 2016, V1 Problema 1 Una máquina frigorífica utiliza el ciclo estándar de compresión de vapor. Produce 50 kw de refrigeración utilizando como refrigerante R-22, si su temperatura

Más detalles

PRÁCTICA 2: MEDIDORES DE FLUJO

PRÁCTICA 2: MEDIDORES DE FLUJO Universidad Nacional Experimental Francisco De Miranda Área De Tecnología Programa De Ingeniería Química Departamento de Energética Laboratorio de Operaciones Unitarias I PRÁCTICA 2: MEDIDORES DE FLUJO

Más detalles

Mecánica de Fluidos B 67.18

Mecánica de Fluidos B 67.18 Mecánica de Fluidos B 67.8 Exresiones útiles c v Ma c v h 0 h + 0 T ( ) + Ma ρ T 0 ρ 0 0 ρ ρ 0 ( ) + Ma 0 ( ) + Ma Ma : R T α asin T Ma velocidad del sonido ara gas ideal número de Mach ángulo del cono

Más detalles

Práctica 7 Gasto másico y potencia y eficiencia de una bomba. M del Carmen Maldonado Susano

Práctica 7 Gasto másico y potencia y eficiencia de una bomba. M del Carmen Maldonado Susano Práctica 7 Gasto másico y potencia y eficiencia de una bomba Abierto Sistemas Cerrado Aislado Energía Cinética Es la energía que pose un cuerpo o sistema debido a la velocidad. Ec 1 mv 2 Joule 2 Energía

Más detalles

PRUEBA ACCESO A CICLOS FORMATIVOS DE GRADO SUPERIOR OPCIÓN B: TECNOLOGÍA INDUSTRIAL

PRUEBA ACCESO A CICLOS FORMATIVOS DE GRADO SUPERIOR OPCIÓN B: TECNOLOGÍA INDUSTRIAL PRUEBA ACCESO A CICLOS FORMATIVOS DE GRADO SUPERIOR OPCIÓN B: TECNOLOGÍA INDUSTRIAL DATOS DEL ASPIRANTE Apellidos: CALIFICACIÓN PRUEBA Nombre: D.N.I. o Pasaporte: Fecha de nacimiento: / / Instrucciones:

Más detalles

PRÁCTICA CICLO DE POTENCIA DE GAS (BRAYTON)

PRÁCTICA CICLO DE POTENCIA DE GAS (BRAYTON) UNIVERSIDAD NACIONAL EXPERIMENTAL ``FRANCISCO DE MIRANDA ÁREA DE TECNOLOGÍA PROGRAMA DE INGENIERÍA INDUSTRIAL, MECÁNICA LABORATORIO DE TERMODINÁMICA APLICADA. LABORATORIO DE CONVERSIÓN DE ENERGÍA PRÁCTICA

Más detalles

TEMA 2. Prestaciones y análisis de la misión

TEMA 2. Prestaciones y análisis de la misión EMA Prestaciones y análisis de la misión G. Paniagua, P. Piqueras Departamento de Máquinas y Motores érmicos UNIVERSIDAD POLIÉCNICA DE VALENCIA 1 Índice Análisis del ciclo termodinámico Generación de empuje

Más detalles

RADIACIÓN TÉRMICA TRABAJO PRÁCTICO. Objetivos

RADIACIÓN TÉRMICA TRABAJO PRÁCTICO. Objetivos FACULTAD DE CIENCIAS EXACTAS, INGENIERÍA Y AGRIMENSURA ESCUELA DE FORMACIÓN BÁSICA DEPARTAMENTO DE FÍSICA Y QUÍMICA FÍSICA II TERMODINÁMICA TRABAJO PRÁCTICO RADIACIÓN TÉRMICA Objetivos Verificar experimentalmente

Más detalles

Enunciados Lista 6. Estado T(ºC)

Enunciados Lista 6. Estado T(ºC) 8.1 El compresor en un refrigerador recibe refrigerante R-134a a 100 kpa y 20 ºC, y lo comprime a 1 MPa y 40 ºC. Si el cuarto se encuentra a 20 ºC, determine la transferencia de calor reversible y el trabajo

Más detalles

Introducción a la Ing. Aeroespacial

Introducción a la Ing. Aeroespacial Introducción a la Ing. Aeroespacial Tema 5 Propulsión Aérea Parte III: Descripción General de los Aerorreactores Sergio Esteban Roncero Francisco Gavilán Jiménez Departamento de Ingeniería Aeroespacial

Más detalles

HIGROMETRÍA. TORRE DE ENFRIAMIENTO EVAPORATIVO

HIGROMETRÍA. TORRE DE ENFRIAMIENTO EVAPORATIVO HIGROMETRÍA. TORRE DE ENFRIAMIENTO EVAPORATIVO Objetivo 1. Mostrar instrumentación típica de los sistemas de acondicionamiento ambiental (HVAC): termohigrómetros, bombas, compresores, manómetros, reguladores,

Más detalles

PRÁCTICA N 5: DEMOSTRACIÓN DEL TEOREMA DE BERNOULLI

PRÁCTICA N 5: DEMOSTRACIÓN DEL TEOREMA DE BERNOULLI PRÁCTICA N 5: DEMOSTRACIÓN DEL TEOREMA DE BERNOULLI INTRODUCCIÓN La dinámica de fluidos analiza los gases y líquidos en movimiento. Además, es una de las ramas más complejas de la mecánica. La conservación

Más detalles

SISTEMAS ABIERTOS BALANCE DE MASA ELABORÓ MSc. EFRÉN GIRALDO TORO.

SISTEMAS ABIERTOS BALANCE DE MASA ELABORÓ MSc. EFRÉN GIRALDO TORO. 1 SISTEMAS ABIERTOS BALANCE DE MASA ELABORÓ MSc. EFRÉN GIRALDO TORO. REVISÓ PhD. CARLOS A. ACEVEDO. PRESENTACIÓN HECHA EXCLUIVAMENTE CON EL FIN DE FACILITAR EL ESTUDIO. MEDELLÍN 2016 2 Contenido Sistemas

Más detalles

R para el aire es 53.3 lb-ft/lb R en el sistema inglés, o 29.2 N m/n K.

R para el aire es 53.3 lb-ft/lb R en el sistema inglés, o 29.2 N m/n K. Flujo de gases Si el cambio en la presión es menor a aproximadamente el 10% de la presión de entrada, las variaciones en peso específico tendrán un efecto insignificante. Cuando la caída de presión se

Más detalles

Flujo de fluidos compresibles

Flujo de fluidos compresibles Flujo de fluidos compresibles La variación de la densidad debe ser considerada en las ecuaciones que representan los sistemas en los que se transportan fluidos compresibles. En el área de la ingeniería

Más detalles

ESCUELA TÉCNICA SUPERIOR DE INGENIEROS AERONÁUTICOS. Mecánica de Fluidos II Examen

ESCUELA TÉCNICA SUPERIOR DE INGENIEROS AERONÁUTICOS. Mecánica de Fluidos II Examen ESCUELA TÉCNICA SUPERIOR DE INGENIEROS AERONÁUTICOS Mecánica de Fluidos II Eamen 28-06-02 Un tubo vertical infinitamente largo tiene un pistón de masa M p inicialmente anclado en una sección =0. En la

Más detalles

Ejemplo. pie. lbf. pie = pie. Ejemplo

Ejemplo. pie. lbf. pie = pie. Ejemplo Calcular la densidad, peso específico, masa, y el peso de un cuerpo que ocupa un volumen de 00 (pie ) y su volumen específico es de 10 (pie /lb) La masa es: la densidad es: V 00 m = = = 0 v 10 ( lb) 1

Más detalles

Formatos para prácticas de laboratorio

Formatos para prácticas de laboratorio CARRERA PLAN DE ESTUDIO CLAVE DE UNIDAD DE APRENDIZAJE NOMBRE DE LA UNIDAD DE APRENDIZAJE ING. MECÁNICO 2009-2 12198 MECÁNICA DE FLUIDOS PRÁCTICA No. MF-04 LABORATORIO DE NOMBRE DE LA PRÁCTICA MECÁNICA

Más detalles

UNIVERSIDAD POLITÉCNICA DE MADRID ESCUELA TÉCNICA SUPERIOR DE INGENIEROS AERONÁUTICOS

UNIVERSIDAD POLITÉCNICA DE MADRID ESCUELA TÉCNICA SUPERIOR DE INGENIEROS AERONÁUTICOS UNIVERSIDAD POLITÉCNICA DE MADRID ESCUELA TÉCNICA SUPERIOR DE INGENIEROS AERONÁUTICOS Mecánica de Fluidos I Examen 03011 Un deósito aislado térmicamente y de volumen inicial V 0) está lleno de aire a la

Más detalles

Formulario de Termodinámica Aplicada Conceptos Básicos Formula Descripción Donde F= fuerza (newton) Fuerza ( )

Formulario de Termodinámica Aplicada Conceptos Básicos Formula Descripción Donde F= fuerza (newton) Fuerza ( ) Conceptos Básicos Formula Descripción Donde F= fuerza (newton) Fuerza ( ) a = aceleración (m/s 2 ) Peso P= peso (newton) ( ) g = gravedad (9.087 m/s 2 ) Trabajo ( ) 1 Joule = 1( N * m) W = trabajo (newton

Más detalles

y 2 Considere que el viento no sopla en la dirección AB sino que lo hace de forma que v r

y 2 Considere que el viento no sopla en la dirección AB sino que lo hace de forma que v r P1. Anemometría sónica. Hoy en día, los Centros Meteorológicos disponen de aparatos muy sofisticados para medir la velocidad del viento que, además y simultáneamente, miden la temperatura del aire. El

Más detalles

PROBLEMAS PROPUESTOS DE TECNOLOGÍA FRIGORÍFICA

PROBLEMAS PROPUESTOS DE TECNOLOGÍA FRIGORÍFICA PROBLEMAS PROPUESTOS DE TECNOLOGÍA FRIGORÍFICA Versión 1.1 (octubre 2017) Juan F. Coronel Toro (http://jfc.us.es) Problema 1 Una máquina frigorífica utiliza el ciclo estándar de compresión de vapor. Produce

Más detalles

PRÁCTICA 1: MEDIDORES DE FLUJO

PRÁCTICA 1: MEDIDORES DE FLUJO 1 Universidad Nacional Experimental Francisco De Miranda Área De Tecnología Programa De Ingeniería Química Departamento de Energética Laboratorio de Operaciones Unitarias I PRÁCTICA 1: MEDIDORES DE FLUJO

Más detalles

Problemas de Mecánica y Ondas II. Boletín nº 2. (Fluidos) Es incompresible? Existe la función de corriente? Determínela en caso afirmativo.

Problemas de Mecánica y Ondas II. Boletín nº 2. (Fluidos) Es incompresible? Existe la función de corriente? Determínela en caso afirmativo. Problemas de Mecánica y Ondas II. oletín nº 2. (Fluidos) 15. Considere un flujo cuyas componentes de la velocidad son 3 2 u = 0 v = y 4 z w=3y z Es incompresible? Existe la función de corriente? Determínela

Más detalles

MAQUÍNAS ELÉCTRICAS Tobera

MAQUÍNAS ELÉCTRICAS Tobera MAQUÍNAS ELÉCTRICAS Tobera Una tobera es una restricción o disminución de sección (garganta) precedida de una sección convergente y seguida de otra divergente o difusor. Se supone que el proceso de pasaje

Más detalles

11.1 Relaciones termodinámicas para un gas ideal

11.1 Relaciones termodinámicas para un gas ideal 3 Capítulo Flujo Compresible En éste capítulo se considerarán los efectos de la compresibilidad del fluido sobre las características del flujo. Los efectos de la compresibilidad se ven reflejados por ejemplo

Más detalles

Ejercicios y problemas de neumática e hidráulica

Ejercicios y problemas de neumática e hidráulica Ejercicios y problemas de neumática e hidráulica 1. Un depósito contiene aire comprimido a 4 atm. Cuál es su presión en pascales? (Sol.: 400.000 pascales). 2. Si tenemos una jeringuilla que contiene 0,02

Más detalles

Este capítulo fue incluido a efectos de mostrar una aplicación del adquisidor. No pretende ser un estudio riguroso de la calibración.

Este capítulo fue incluido a efectos de mostrar una aplicación del adquisidor. No pretende ser un estudio riguroso de la calibración. 9 Pruebas de campo Este capítulo fue incluido a efectos de mostrar una aplicación del adquisidor. No pretende ser un estudio riguroso de la calibración. 9.1 Introducción En general, los adquisidores utilizados

Más detalles

Enunciados Lista 3. Nota: Realizar diagrama P-v del proceso.

Enunciados Lista 3. Nota: Realizar diagrama P-v del proceso. 5.9 El agua en un depósito rígido cerrado de 150 lt se encuentra a 100 ºC con 90% de calidad. El depósito se enfría a -10 ºC. Calcule la transferencia de calor durante el proceso. 5.14 Considere un Dewar

Más detalles

6.- a) Explique el funcionamiento del circuito neumático representado en el esquema. b) defina cada uno de los elementos que lo componen.

6.- a) Explique el funcionamiento del circuito neumático representado en el esquema. b) defina cada uno de los elementos que lo componen. 1.- a) Describa los componentes empleados en el circuito neumático representado en la siguiente figura. (0,5 puntos) b) Explique el funcionamiento del circuito neumático. (1,5 puntos) 2.-.- Se dispone

Más detalles

Primera Ley Sistemas Abiertos

Primera Ley Sistemas Abiertos Cap. 10 Primera Ley Sistemas Abiertos INTRODUCCIÓN Este capìtulo complementa el anterior de Sistemas Cerrados para tener toda la gama de màquinas termodinàmicas; tambièn contiene teorìa de las válvulas

Más detalles

CAPÍTULO 5 EXPERIMENTOS FLUIDINÁMICOS. En este trabajo se realizaron pruebas fluidinámicas de partículas de pimienta chica con

CAPÍTULO 5 EXPERIMENTOS FLUIDINÁMICOS. En este trabajo se realizaron pruebas fluidinámicas de partículas de pimienta chica con CAPÍTULO 5 EXPERIMENTOS FLUIDINÁMICOS En este trabajo se realizaron pruebas fluidinámicas de partículas de pimienta chica con vapor sobrecalentado. Se realizaron nueve experimentos de fluidinámica bajo

Más detalles

Mediciones en Mecánica de Fluidos

Mediciones en Mecánica de Fluidos Mediciones en Mecánica de Fluidos En el laboratorio de ingeniería y en muchas situaciones industriales es importante medir las propiedades de fluidos y diversos parámetros de flujo, como presión, velocidad

Más detalles

CAPITULO 7 ESTUDIO DEL EQUIPO PARA REALIZAR LAS PRUEBAS. El equipo lo constituyen; un calentador de vapor, una bomba de vacío, y una

CAPITULO 7 ESTUDIO DEL EQUIPO PARA REALIZAR LAS PRUEBAS. El equipo lo constituyen; un calentador de vapor, una bomba de vacío, y una 64 CAPITULO 7 ESTUDIO DEL EQUIPO PARA REALIZAR LAS PRUEBAS 7.1 Descripción del equipo El equipo lo constituyen; un calentador de vapor, una bomba de vacío, y una columna de acero inoxidable como elementos

Más detalles

Sonda de medición Para la tecnología de ventilación y aire acondicionado Modelo A2G-FM

Sonda de medición Para la tecnología de ventilación y aire acondicionado Modelo A2G-FM Especial Sonda de medición Para la tecnología de ventilación y aire acondicionado Modelo A2G-FM Hoja técnica WIKA SP 69.10 Aplicaciones Medición de caudal en tubos de ventilación redondos Medición de caudal

Más detalles

Válvula de cierre de seguridad SAV

Válvula de cierre de seguridad SAV SAV Válvula de cierre de seguridad Válvula de cierre de seguridad SAV Dispositivo de cierre de acción directa con muelle de valor de consigna ajustable para control de la sobrepresión y falta de presión

Más detalles

UNIDAD 1: DISEÑO DE CÁMARAS FRIGORÍFICAS GUIA DE PROBLEMAS RESUELTOS

UNIDAD 1: DISEÑO DE CÁMARAS FRIGORÍFICAS GUIA DE PROBLEMAS RESUELTOS UNIDAD 1: DISEÑO DE CÁMARAS FRIGORÍFICAS GUIA DE PROBLEMAS RESUELTOS 1. Una Cámara de refrigeración para almacenamiento de Kiwi tiene las siguientes dimensiones: 3,6 m x 8 m x 28 m. Fue diseñado para operar

Más detalles

Formatos para prácticas de laboratorio

Formatos para prácticas de laboratorio CARRERA PLAN DE ESTUDIO CLAVE DE UNIDAD DE APRENDIZAJE NOMBRE DE LA UNIDAD DE APRENDIZAJE ING. MECÁNICO 2009-2 12198 MECÁNICA DE FLUIDOS PRÁCTICA No. LABORATORIO DE MECÁNICA DE FLUIDOS 1 DURACIÓN (HORAS)

Más detalles

6. pérdidas de carga en conduc tos climaver

6. pérdidas de carga en conduc tos climaver 6. pérdidas de carga en conduc tos climaver manual de conduc tos de aire acondicionado climaver 62 El aire que circula por la red de conductos, recibe la energía de impulsión (aspiración) por medio de

Más detalles

CURVAS CARACTERÍSTICAS DE UN VENTILADOR CENTRÍFUGO

CURVAS CARACTERÍSTICAS DE UN VENTILADOR CENTRÍFUGO UNIVERSIDAD DE OVIEDO Área de Mecánica de Fluidos E.P.S. de Ingeniería de Gijón INGENIERÍA DE FLUIDOS Práctica de laboratorio 3: CURVAS CARACTERÍSTICAS DE UN VENTILADOR CENTRÍFUGO 1. OBJETO DE LA PRÁCTICA

Más detalles

INDICE 1.- CÁLCULO DE CHIMENEA DE EVACUACIÓN DE HUMOS SEGÚN LA NORMA EN DATOS DE PARTIDA... 2

INDICE 1.- CÁLCULO DE CHIMENEA DE EVACUACIÓN DE HUMOS SEGÚN LA NORMA EN DATOS DE PARTIDA... 2 INDICE 1.- CÁLCULO DE CHIMENEA DE EVACUACIÓN DE HUMOS SEGÚN LA NORMA EN 13384-1.... 2 1.1.- DATOS DE PARTIDA.... 2 1.2.- CAUDAL DE LOS PRODUCTOS DE COMBUSTIÓN.... 2 1.3.- DENSIDAD MEDIA DE LOS HUMOS...

Más detalles

G.U.N.T. Gerätebau GmbH

G.U.N.T. Gerätebau GmbH Equipamiento para la Enseñanza Técnica Manual de experimentos HM15008 Estudio de las Fuerzas en Chorro GUNT Gerätebau GmbH Fahrenberg 14 D-22885 Barsbüttel Alemania Teléfono +49 (40) 670854-0 Telefax +49

Más detalles

TRANSFERENCIA DE CALOR POR CONVECCIÓN

TRANSFERENCIA DE CALOR POR CONVECCIÓN TRANSFERENCIA DE CALOR POR CONVECCIÓN Nos hemos concentrado en la transferencia de calor por conducción y hemos considerado la convección solo hasta el punto en que proporciona una posible condición de

Más detalles

1 TERMODINAMICA Departamento de Física - UNS Carreras: Ing. Industrial y Mecánica

1 TERMODINAMICA Departamento de Física - UNS Carreras: Ing. Industrial y Mecánica TERMODINAMICA Departamento de Física - UNS Carreras: Ing. Industrial y Mecánica Trabajo Práctico N : PROCESOS Y CICLOS DE POTENCIA DE VAPOR Procesos con vapor ) En un cierto proceso industrial se comprimen

Más detalles

Medida del índice adiabático del aire

Medida del índice adiabático del aire Medida del índice adiabático del aire Víctor Martínez Flores-50491 Irene nuño Rodriguez-50419 Santiago San Andrés Martínez-50246 David Serret Mayer-50443 Introducción En esta práctica el objetivo es calcular

Más detalles

Medidor Másico de Caudal tipo Térmico Modelo KES

Medidor Másico de Caudal tipo Térmico Modelo KES Medidor Másico de Caudal tipo Térmico para gases medición control análisis KES O O Medición directa de caudal másico de gases O O Precisión de medición: ±1,0% fondo de escala +0,5% de la lacture p max

Más detalles

CAPITULO 7 PRUEBAS FLUDINÁMICAS. El propósito de las pruebas fludinámicas es obtener la velocidad mínima de fluidización

CAPITULO 7 PRUEBAS FLUDINÁMICAS. El propósito de las pruebas fludinámicas es obtener la velocidad mínima de fluidización CAPITULO 7 PRUEBAS FLUDINÁMICAS 7.1 CONDICIONES DE LOS EXPERIMENTOS El propósito de las pruebas fludinámicas es obtener la velocidad mínima de fluidización ( ). La cual se va a utilizar en las pruebas

Más detalles

INGENIERÍA QUÍMICA Problemas propuestos Pág. 1 CONCEPTOS FUNDAMENTALES

INGENIERÍA QUÍMICA Problemas propuestos Pág. 1 CONCEPTOS FUNDAMENTALES Problemas propuestos Pág. 1 CONCEPTOS FUNDAMENTALES Problema nº 1) [01-07] Por una tubería fluyen 100 lb de agua a razón de 10 ft/s. Cuánta energía cinética (E = ½ mav 2 ) tiene el agua, expresada en unidades

Más detalles

HIDRÁULICA Ingeniería en Acuicultura.

HIDRÁULICA Ingeniería en Acuicultura. HIDRÁULICA Ingeniería en Acuicultura. Omar Jiménez Henríquez Departamento de Física, Universidad de Antofagasta, Antofagasta, Chile, I semestre 2011. Omar Jiménez. Universidad de Antofagasta. Chile Hidráulica

Más detalles

Válvulas de Control AADECA. Ing. Eduardo Néstor Álvarez Pérdidas de Carga

Válvulas de Control AADECA. Ing. Eduardo Néstor Álvarez Pérdidas de Carga Válvulas de Control AADECA Ing. Eduardo Néstor Álvarez Pérdidas de Carga LA VÁLVULA DE CONTROL ESTRANGULA EL PASO DE FLUIDO, PROVOCA UNA PÉRDIDA DE PRESION. DARCY ' P = )*f * (L/D)*( V 2 /2g) f = factor

Más detalles

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE ESTUDIOS SUPERIORES CUAUTITLÁN LICENCIATURA: INGENIERÍA MECÁNICA ELÉCTRICA

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE ESTUDIOS SUPERIORES CUAUTITLÁN LICENCIATURA: INGENIERÍA MECÁNICA ELÉCTRICA UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE ESTUDIOS SUPERIORES CUAUTITLÁN LICENCIATURA: INGENIERÍA MECÁNICA ELÉCTRICA PROGRAMA DE LA ASIGNATURA DE: Mecánica de Fluidos IDENTIFICACIÓN DE LA ASIGNATURA

Más detalles

Termodinámica: Segundo principio de la termodinámica Parte 5: Maquinas térmicas

Termodinámica: Segundo principio de la termodinámica Parte 5: Maquinas térmicas Termodinámica: Segundo principio de la termodinámica Parte 5: Maquinas térmicas Olivier Skurtys Departamento de Ingeniería Mecánica Universidad Técnica Federico Santa María Email: olivier.skurtys@usm.cl

Más detalles

Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Cátedra de Mecánica de los Fluidos. Carrea de Ingeniería Civil

Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Cátedra de Mecánica de los Fluidos. Carrea de Ingeniería Civil Universidad Nacional de Córdoba Facultad de Ciencias Exactas Físicas y Naturales Cátedra de Mecánica de los Fluidos Carrea de Ingeniería Civil FLUJO COMPRESIBLE DR. ING. CARLOS MARCELO GARCÍA 2011 A modo

Más detalles

PROBLEMA EXPERIMENTAL 1

PROBLEMA EXPERIMENTAL 1 Física Aplicada a Farmacia. //00 PROBLEMA EXPERIMENTAL 3 puntos El constantán es una aleación de cobre y níquel cuya resistividad es constante en un amplio rango de temperaturas. Esta resistividad debe

Más detalles

Carrera: MCT Participantes Representantes de las academias de Ingeniería Mecánica de Institutos Tecnológicos. Academia de Ingeniería

Carrera: MCT Participantes Representantes de las academias de Ingeniería Mecánica de Institutos Tecnológicos. Academia de Ingeniería 1.- DATOS DE LA ASIGNATURA Nombre de la asignatura: Carrera: Clave de la asignatura: Horas teoría-horas práctica-créditos Flujo de Fluidos Ingeniería Mecánica MCT - 0515 2 3 7 2.- HISTORIA DEL PROGRAMA

Más detalles

Anexo 5. Separador Ciclónico ANEXO 5. DISEÑO DEL SEPARADOR CICLÓNICO

Anexo 5. Separador Ciclónico ANEXO 5. DISEÑO DEL SEPARADOR CICLÓNICO ANEXO 5. DISEÑO DEL SEPARADOR CICLÓNICO La corriente de gases de salida del desorbedor es conducida a un separador ciclónico, comúnmente denominado ciclón. Se dispone justamente después del horno rotativo

Más detalles

67.30 Combustión Unidad VII 126. Unidad VII: Detonación, combustión en recipientes cerrados

67.30 Combustión Unidad VII 126. Unidad VII: Detonación, combustión en recipientes cerrados 67.30 Combustión Unidad VII 6 Unidad VII: Detonación, combustión en recipientes cerrados 7. Detonación 7.. Introducción El término detonación se usa para una onda de combustión que viaja a velocidad supersónica

Más detalles

LABORATORIO SECUNDARIO DE GAS, UNA OPCIÓN DE INVERSIÓN.

LABORATORIO SECUNDARIO DE GAS, UNA OPCIÓN DE INVERSIÓN. LABORATORIO SECUNDARIO DE GAS, UNA OPCIÓN DE INVERSIÓN. Juan José Mercado Pérez Centro Nacional de Metrología Dirección de Metrología Mecánica, División de Flujo y Volumen (442) 2 11 05 00 al 04, ext.:

Más detalles

UNIVERSIDAD NACIONAL DE INGENIERÍA FACULTAD DE INGENIERÍA MECÁNICA DEPARTAMENTO ACADÉMICO DE CIENCIAS DE LA INGENIERÍA

UNIVERSIDAD NACIONAL DE INGENIERÍA FACULTAD DE INGENIERÍA MECÁNICA DEPARTAMENTO ACADÉMICO DE CIENCIAS DE LA INGENIERÍA UNIVERSIDAD NACIONAL DE INGENIERÍA FACULTAD DE INGENIERÍA MECÁNICA DEPARTAMENTO ACADÉMICO DE CIENCIAS DE LA INGENIERÍA SILABO P.A. 2011-II 1. INFORMACIÓN GENERAL Nombre del curso : MECÁNICA DE FLUIDOS

Más detalles

Enunciados Lista 5 Nota: 7.2* 7.7* 7.9* 7.14* 7.20* 7.21*

Enunciados Lista 5 Nota: 7.2* 7.7* 7.9* 7.14* 7.20* 7.21* Nota: Los ejercicios 7.14, 7.20, 7.21. 7.26, 7.59, 7.62, 7.67, 7.109 y 7.115 tienen agregados y/o sufrieron modificaciones respecto al Van Wylen. 7.2* Considere una máquina térmica con ciclo de Carnot

Más detalles

Trabajo Práctico N 4. Dinámica de los Fluidos

Trabajo Práctico N 4. Dinámica de los Fluidos Trabajo Práctico N 4 Dinámica de los Fluidos Objetivo del Práctico: Este práctico está destinado a: - El estudio y la aplicación de la ecuación de Bernoulli - El estudio y aplicación de la ecuación de

Más detalles

U.L.A. FACULTAD DE INGENIERIA. Mérida, 19/06/2008 ESCUELA DE MECANICA. MECANICA DE FLUIDOS. Sección 01. PRIMER PARCIAL TEORIA.

U.L.A. FACULTAD DE INGENIERIA. Mérida, 19/06/2008 ESCUELA DE MECANICA. MECANICA DE FLUIDOS. Sección 01. PRIMER PARCIAL TEORIA. U.L.A. FACULTAD DE INGENIERIA. Mérida, 19/06/008 TEORIA. 1. Qué se debe hacer para determinar si un gas se comporta como fluido compresible o incompresible?. Qué es la presión de vapor? 3. Explique el

Más detalles

Universidad Simón Bolívar Departamento de Conversión y Transporte de Energía Turbo Maquinas Térmicas CT ASIGNACIÓN I

Universidad Simón Bolívar Departamento de Conversión y Transporte de Energía Turbo Maquinas Térmicas CT ASIGNACIÓN I Universidad Simón Bolívar Departamento de Conversión y Transporte de Energía Turbo Maquinas Térmicas CT-3412 2011 ASIGNACIÓN I Problema 1. Se requiere que un equipo produzca 15m de altura y transporte

Más detalles

IT-ATM Metodos de medida no normalizados Determinación de la velocidad y caudal

IT-ATM Metodos de medida no normalizados Determinación de la velocidad y caudal IT-ATM-08.1 Metodos de medida no normalizados Determinación de la velocidad y caudal ÍNDICE 1. OBJETO. 2. ALCANCE Y ÁMBITO DE APLICACIÓN. 3. DEFINICIONES. 4. EQUIPOS. 5. DESARROLLO. 6. CÁLCULOS Y EXPRESIÓN

Más detalles

Termodinámica: Segundo principio de la termodinámica Parte 3: Maquinas térmicas

Termodinámica: Segundo principio de la termodinámica Parte 3: Maquinas térmicas Termodinámica: Segundo principio de la termodinámica Parte 3: Maquinas térmicas Olivier Skurtys Departamento de Ingeniería Mecánica Universidad Técnica Federico Santa María Email: olivier.skurtys@usm.cl

Más detalles

EJERCICIOS NEUMÁTICA/HIDRÁULICA. SELECTIVIDAD

EJERCICIOS NEUMÁTICA/HIDRÁULICA. SELECTIVIDAD EJERCICIOS NEUMÁTICA/HIDRÁULICA. SELECTIVIDAD 83.- Un cilindro neumático tiene las siguientes características: Diámetro del émbolo: 100 mm, diámetro del vástago: 20 mm, carrera: 700 mm, presión de trabajo:

Más detalles

Enunciados Lista 3. FIGURA P5.14 Nota: Se modificaron los porcentajes respecto al ejercicio del libro.

Enunciados Lista 3. FIGURA P5.14 Nota: Se modificaron los porcentajes respecto al ejercicio del libro. 5.9 * El agua en un depósito rígido cerrado de 50 lt se encuentra a 00 ºC con 90% de calidad. El depósito se enfría a -0 ºC. Calcule la transferencia de calor durante el proceso. 5.4 * Considere un Dewar

Más detalles

Cap. 6.- Ciclos de turbinas de gas.

Cap. 6.- Ciclos de turbinas de gas. Cap. 6.- Ciclos de turbinas de gas. Ejercicios propuestos Escuela Politécnica Superior Profesores: Pedro A. Rodríguez Aumente, catedrático de Máquinas y Motores Térmicos Antonio Lecuona Neumann, catedrático

Más detalles

TRABAJO DE RECUPERACIÓN DE FÍSICA Y QUÍMICA. ESO

TRABAJO DE RECUPERACIÓN DE FÍSICA Y QUÍMICA. ESO TRABAJO DE RECUPERACIÓN DE FÍSICA Y QUÍMICA. ESO3. 2016-2017 1. Dada la relación en castellano entre dos magnitudes: Cómo varía la presión atmosférica (atm) con respecto a la altura (m)? d) Cómo expresarías

Más detalles