Lección 5. Balance de Energía: Metabolismo Pingüino Emperador

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Lección 5. Balance de Energía: Metabolismo Pingüino Emperador"

Transcripción

1 Física aplicada a procesos naturales. Tema II.- Criosfera: de la Antártida a Marte. Lección 5. Balance de Energía: Metabolismo Pingüino Emperador

2 Balance energético del emperador. Principio de conservación de la energía (primer principio de la termodinámica) : Metabolismo (M) + Radiación Solar (I s )= Convección (I c ) + Conducción (C) + Radiación infrarroja (I i ) LA ENERGÍA PRODUCIDA O GANADA POR EL AVE SERÁ (+). LA ENERGÍA PERDIDA POR EL AVE SERÁ (-). 2

3 Parámetros característicos del medio. Conductividad térmica del aire (W/mK) Viscosidad cinemática del aire (m 2 /s) Absortancia (α) Emisividad (ε) Conductividad térmica de la grasa y pluma de pingüino (W/mK) Constante de Stefan-Boltzmann= (W/m 2 K 4 ). 3

4 Balance de energía en invierno. Intervalos sin viento. Sin viento. <Temp> media (ºC) -30 Velocidad media del viento (m/s) (km/h) Intensidad de Radiación Solar (W/m 2 ) 0 (0) 0 Convección libre. Emisión de radiación infrarroja. 4

5 Balance energía en invierno: emisión de radiación infrarroja. I 4 S ( T T ) 18W Inf p a 4 Tp = (273-27) K = 246 K Ta = (273-30) K = 243 K ΔT = 3 K - Constante de Stefan-Boltzmann= (W/m 2 K 4 ). Emsividad = 0.95 Área superficial=1.89 m 2 5

6 Balance de energía en invierno: convección libre. k h 0.11Gr W / m 2 º d C I ShT 13W convección ΔT = 3 ºC Área superficial=1.89 m 2 6

7 Balance de energía en invierno. Intervalos sin viento. <Temp> -30 (ºC) Viento m/s 0 I Inf 18W Sin viento. Radiación 0 I W Solar W/m convección 13 2 I Iconvección I Neta 31W Metabolismo( M ) 34W I 31W M 34W 7

8 Balance de energía en invierno. Con viento. Intervalos con viento. Convección Forzada: <Temp> media (ºC) -30 Velocidad media del viento (m/s) Intensidad de Radiación Solar (W/m 2 ) 10(36) 0 Convección Forzada. Emisión de radiación infrarroja. 8

9 Balance de energía en invierno: emisión de radiación infrarroja. I 4 S ( T T ) 6W Inf p a 4 - Constante de Stefan-Boltzmann= (W/m 2 K 4 ). Tp = ( ºC) K = 244 K Ta = ( ºC) K = 243 K Área superficial=1.89 m 2 9

10 Balance de energía en invierno: I convección ShT 49W convección forzada. k h 0.24Re 26W / m º C d ΔT = 1 ºC Área superficial=1.89 m 2 10

11 Balance de energía en invierno: Intervalos sin viento. <Temp> -30 (ºC) Viento m/s 10 con viento. I Neta 6W Radiación 0 I W Solar W/m convección 49 2 I Iconvección I Inf 55W Metabolismo( M ) 34W I 55W M 34W 11

12 Balance de energía en verano: sin viento <Temp> media (ºC) -10 Velocidad media del viento (m/s) (km/h) Intensidad de Radiación Solar (W/m 2 ). Ángulo elevación media=22º 0(0) 150 Intervalos sin viento. Convección libre. 12

13 Balance de energía en verano: emisión de radiación infrarroja. I 4 S ( T T ) 30W Inf p a 4 - Constante de Stefan-Boltzmann= (W/m 2 K 4 ). Tp = (273-10) K = 263 K Ta = (273-6) K = 267 K ΔT = 4 K Área superficial=1.89 m 2 13

14 Balance de energía en verano: absorción de radiación solar. I absorbida StransversalI S cos( 68º ) 17W S transversal 0.6m 2 Flujo solar medio Absortancia (α) Angulo de (W/m 2 ) I S incidencia (º)

15 Balance de energía en verano: convección libre. k h 0.11Gr W / m 2 º d C I ShT 21W convección ΔT = 4 ºC Área superficial=1.89 m 2 15

16 Balance de energía en verano: Intervalos sin viento. sin viento <Temp> -10 I Neta I S Iinf (17 30) W 13 (ºC) Viento m/s 0 Radiación 150 I W Solar W/m convección 21 2 I Iconvección I Neta 34W Metabolismo( M ) 34W I 34W M 34W W 16

17 Balance de energía en verano: con viento. <Temp> media (ºC) -10 Velocidad media del viento (m/s) (km/h) Intensidad de Radiación Solar (W/m 2 ). Ángulo elevación media=22º 10(36) 150 Intervalos con viento. Convección Forzada. 17

18 Balance de energía en verano: emisión de radiación infrarroja. I 4 S ( T T ) 8W Inf p a 4 Tp = (273-10) K = 263 K Ta = (273-9) K = 264 K ΔT = 1 K - Constante de Stefan-Boltzmann= (W/m 2 K 4 ). Área superficial=1.89 m 2 18

19 Balance de energía en verano: absorción de radiación solar. I absorbida SI S cos( 68º ) 17W Flujo solar medio Absortancia (α) Angulo de (W/m2) I S incidencia (º)

20 Balance de energía en verano: convección forzada. k h 0.24Re 26W / m º C d I convección ShT 49W ΔT = 1 ºC Área superficial=1.89 m 2 20

21 Balance de energía en verano: Intervalos con viento. con viento. <Temp> -10 I Neta I S Iinf (17 8) W 9 (ºC) Viento m/s 0 Radiación 150 I W Solar W/m convección 49 2 I Iconvección I Neta 40W Metabolismo( M ) 34W I 40W M 34W W 21

22 Valores comparativos de diferentes situaciones. Verano sin viento Verano con viento Invierno sin viento Invierno con viento Radiación Neta (W) Convección (W) Energía perdida (W) Temperatura media (ºC). ΔT(ºC) Velocidad (m/s 2 )

23 Estrategias térmicas del pingüino. Fomación de Melés colectivas. Variación de la esponjosidad del plumaje. Alteración del contenido en aire (mayor conductividad térmica. Aumento del espesor de la capa aislante. 23

24 Geometría corporal individuo aislado. D=1m. h=1.2m. Área superficial=1.89 m 2 24

25 Geometría grupo de 18 individuos. Las melés suelen reunir a más de 3000 aves que se mueven lentamente en la dirección del viento dominante cambiando alternativamente de posición. D= 1.5 m. h= 1.2 m. Factor de empaquetamiento= 10 aves/m 2 Área/individuo= 0.1 m 2. 25

26 Balance de energía en invierno: convección forzada. Formando melé. Intervalos sin viento. <Temp> media (ºC) -30 Velocidad media del viento (m/s) (km/h) Intensidad de Radiación Solar (W/m 2 ) 10(36) 0 Convección forzada. Emisión de radiación infrarroja. 26

27 Balance de energía en invierno: emisión de radiación infrarroja. I 4 S ( T T ) 18W Inf p a 4 - Constante de Stefan-Boltzmann= (W/m 2 K 4 ). Tp = ( ºC) K = 244 K Ta = ( ºC) K = 243 K Área superficial=5.7 m 2 27

28 Balance de energía en invierno: convección forzada. k h( lat) 0.24Re 17W / m º C d k h(sup) 0.032Re 36W / m º C d I convección ( lateral) ShT 288W ΔT = 3 ºC I convección (sup) ShT 192W Área superficial = 5.7 m 2 28

29 I Intervalos sin viento. I Neta 18W Balance de energía en invierno: con viento y formando melé. I convección 480W I Iconvección IInf 498W 28W 9 <Temp> -30 (ºC) Viento m/s 10 Radiación Solar W/m 2 0 Metabolismo( M ) 34W I 55W (sin melé) 28W ( melé) M 34W 29

30 Variación de la conductividad térmica y el espesor de la capa aislante. r e r i Ti=37ºC Te=-30 ºC K Mr e T i re ln ri T r e, disminuye al adelgazar por el ayuno invernal. Los valores iniciales son: r e =27.5 cm., r i =10 cm. Valores finales: r e =17.5 cm., r i =10 cm. e La capa aislante consta de dos partes la grasa (K g =0.11 W/mK) y la pluma engrasada cuyo espesor y conductividad son variables para compensar las variaciones climáticas externas y la reducción de la capa de grasa 0.03 W/mK<K p <0.06W/mK. 30

31 Definición de ENTROPÍA: Entropía: definición. La ENTROPÍA es una función de estado, en cualquier proceso sólo depende de los estados inicial y final. S i S f Q T rev En un proceso reversible: S Universo S gas S Foco 0 En un proceso irreversible: S Universo S gas S Foco 0 31

32 S Universo 0 Corolario. Transformación REVERSIBLE. S Universo 0 Transformación IRREVERSIBLE. No es posible ninguna transformación que haga disminuir la entropía del universo! Se puede disminuir la entropía de un sistema a cambio de aumentar la de otro, de tal forma que el balance de entropía del universo siempre aumente! S Universo S sistema S entorno 0 32

33 Entropía de la incubación. Hay una estrecha relación en los procesos físicos entre la entropía y el orden: Aumento de entropía se desordenan los sistemas. Disminución de entropía se ordenan los sistemas. Ejemplo: congelación del agua a temperatura constante. Aumenta la entropía del sistema al pasar de líquido a sólido hay que extraer calor del agua (-L) por lo que disminuye la entropía y el sólido está en un estado más ordenado. S sólido S líquido L T f 0 33

34 Entropía de la incubación. La incubación es un proceso termodinámico que se realiza a Temperatura constante (37ºC). Para mantener esta temperatura el padre intercambia calor con el huevo que genera su proceso de crecimiento y desarrollo. Sistema = huevo. Entorno = Pingüino padre. Variación de entropía durante la incubación: S pollito S germen Q T pingüino 34

35 Entropía de la incubación. Qué estado del sistema huevo está más ordenado, al inicio de la incubación o al final con el pollo desarrollado? 35

36 S Entropía de la incubación. Más ordenado el pollo que su germen en el huevo. Por lo que su entropía ha disminuido durante la incubación. Pero la entropía del Universo debe haber aumentado. Universo S huevo huevo S S huevo padre S padre padre S 0 S 0 0 S padre Q T pingüino El padre absorbe calor a temperatura constante para que el huevo disminuya su entropía y se desarrolle! 36

37 Qué fue antes el huevo a la gallina? 37

PROBLEMAS TRANSMISIÓN DE CALOR

PROBLEMAS TRANSMISIÓN DE CALOR PROBLEMAS TRANSMISIÓN DE CALOR CD_1 El muro de una cámara frigorífica de conservación de productos congelados está compuesto por las siguientes capas (de fuera a dentro): - Revoco de cemento de 2 cm de

Más detalles

Física Aplicada a Procesos Naturales

Física Aplicada a Procesos Naturales UNIVERSIDAD PARA LOS MAYORES. PROGRAMA DE CIENCIAS NATURALES. SEGUNDO CURSO. Física Aplicada a Procesos Naturales Actividades: Visita al Planetario de Madrid (2 horas). Teoría (18 horas). Descripción del

Más detalles

Balance Global de Energía

Balance Global de Energía Balance Global de Energía Balance de energía 1a Ley de la Termodinámica El balance básico global se establece entre la energía proveniente del sol y la energía regresada al espacio por emisión de la radiación

Más detalles

BALANCE DE ENERGÍA. Diseño de Plantas Industriales Programa de Ingeniería Ambiental Facultad de Ciencias Ambientales

BALANCE DE ENERGÍA. Diseño de Plantas Industriales Programa de Ingeniería Ambiental Facultad de Ciencias Ambientales BALANCE DE ENERGÍA Diseño de Plantas Industriales Programa de Ingeniería Ambiental Facultad de Ciencias Ambientales Los objetivos del balance de Energía son: Determinar la cantidad energía necesaria para

Más detalles

Termodinámica y Máquinas Térmicas

Termodinámica y Máquinas Térmicas Termodinámica y Máquinas Térmicas Tema 09. Transmisión de Calor Inmaculada Fernández Diego Severiano F. Pérez Remesal Carlos J. Renedo Estébanez DPTO. DE INGENIERÍA ELÉCTRICA Y ENERGÉTICA Este tema se

Más detalles

Dentro de las más conocidas, tenemos: Celcius, Fahrenheit, kelvin. Física II Mg. José Castillo Ventura 1

Dentro de las más conocidas, tenemos: Celcius, Fahrenheit, kelvin. Física II Mg. José Castillo Ventura 1 Dentro de las más conocidas, tenemos: Celcius, Fahrenheit, kelvin 100 100 180 Mg. José Castillo Ventura 1 Kelvin Grado Celcius Grado Farenheit Kelvin K = K K = C + 273,15 K = (F + 459,67)5/9 Grado Celcius

Más detalles

TRANSFERENCIA DE CALOR

TRANSFERENCIA DE CALOR Conducción Convección Radiación TRANSFERENCIA DE CALOR Ing. Rubén Marcano Temperatura es una propiedad que depende del nivel de interacción molecular. Específicamente la temperatura es un reflejo del nivel

Más detalles

Anexo I: Extracto-resumen del Estudio Ahorro y. eficiencia energética en invernaderos.

Anexo I: Extracto-resumen del Estudio Ahorro y. eficiencia energética en invernaderos. Anexo I: Extracto-resumen del Estudio Ahorro y eficiencia energética en invernaderos. IDAE La demanda energética de un invernadero depende de la relación entre las condiciones climáticas exteriores y las

Más detalles

TEMA 1. MECANISMOS BÁSICOS DE TRANSMISIÓN DE CALOR

TEMA 1. MECANISMOS BÁSICOS DE TRANSMISIÓN DE CALOR TEMA 1. MECANISMOS BÁSICOS DE TRANSMISIÓN DE CALOR El calor: Es una forma de energía en tránsito. La Termodinámica y La Transferencia de calor. Diferencias. TERMODINAMICA 1er. Principio.Permite determinar

Más detalles

Electricidad y calor

Electricidad y calor Electricidad y calor Webpage: http://paginas.fisica.uson.mx/qb 2007 Departamento de Física Universidad de Sonora Temario A. Termodinámica 1. Temperatura y Ley Cero. (3horas) 1. Equilibrio Térmico y ley

Más detalles

Convección Problemas de convección 1.1. PROBLEMAS DE CONVECCIÓN 1

Convección Problemas de convección 1.1. PROBLEMAS DE CONVECCIÓN 1 1.1. PROBLEMAS DE CONVECCIÓN 1 Convección 1.1. Problemas de convección Problema 1 Una placa cuadrada de 0,1 m de lado se sumerge en un flujo uniforme de aire a presión de 1 bar y 20 C con una velocidad

Más detalles

Electricidad y calor. Webpage: Departamento de Física Universidad de Sonora

Electricidad y calor. Webpage: Departamento de Física Universidad de Sonora Electricidad y calor Webpage: http://paginas.fisica.uson.mx/qb 2007 Departamento de Física Universidad de Sonora Temario A. Termodinámica 1. Temperatura y Ley Cero. (3horas) 1. Equilibrio Térmico y ley

Más detalles

La radiación es la energía de calor transferida por radiación electromagnética. Depende del medio en el que ocurra, de las temperaturas relativas y

La radiación es la energía de calor transferida por radiación electromagnética. Depende del medio en el que ocurra, de las temperaturas relativas y RADIACIÓN La radiación es la energía de calor transferida por radiación electromagnética. Depende del medio en el que ocurra, de las temperaturas relativas y la superficie que absorba o emita la energía.

Más detalles

Termodinámica y Termotecnia

Termodinámica y Termotecnia Termodinámica y Termotecnia Tema 10. Transmisión de Calor Inmaculada Fernández Diego Severiano F. Pérez Remesal Carlos J. Renedo Estébanez DPTO. DE INGENIERÍA ELÉCTRICA Y ENERGÉTICA Este tema se publica

Más detalles

Unidades de Vidrio Aislante de Aislamiento Térmico Reforzado (ATR)

Unidades de Vidrio Aislante de Aislamiento Térmico Reforzado (ATR) Unidades de Vidrio Aislante de Aislamiento Térmico Reforzado (ATR) GUIA DE MATERIALES AISLANTES y EFICIENCIA ENERGETICA (FENERCOM) Eduardo Mª De Ramos Vilariño Director CITAV Saint-Gobain Cristalería,

Más detalles

Consumo de energía de funcionamiento en edificios

Consumo de energía de funcionamiento en edificios Taller de Materialidad III - Cátedra Dr. Arq. E. Di Bernardo J. Vazquez 2014 Consumo de energía de funcionamiento en edificios Balance Energético Nacional Distribución promedio del consumo energético de

Más detalles

convección (4.1) 4.1. fundamentos de la convección Planteamiento de un problema de convección

convección (4.1) 4.1. fundamentos de la convección Planteamiento de un problema de convección convección El modo de transferencia de calor por convección se compone de dos mecanismos de transporte, que son, la transferencia de energía debido al movimiento aleatorio de las moléculas (difusión térmica)

Más detalles

Aislamientos Reflectivos

Aislamientos Reflectivos Asunto: Soluciones de Aislamiento térmico para forjados y suelos En Optimer System S.A, tratamos de dar soluciones a las a los problemas que nos plantean nuestros clientes en lo que se refiere a aislamientos.

Más detalles

GUIA N o 2: TRANSMISIÓN DE CALOR Física II

GUIA N o 2: TRANSMISIÓN DE CALOR Física II GUIA N o 2: TRANSMISIÓN DE CALOR Física II Segundo Cuatrimestre 2013 Docentes: Ing. Daniel Valdivia Lic. Maria Ines Auliel Universidad Nacional de Tres de febrero Depto de Ingeniería Sede Caseros II Buenos

Más detalles

Física II TRANSFERENCIA DE CALOR INGENIERÍA DE SONIDO

Física II TRANSFERENCIA DE CALOR INGENIERÍA DE SONIDO TRANSFERENCIA DE CALOR INGENIERÍA DE SONIDO Primer cuatrimestre 2012 Titular: Valdivia Daniel Jefe de Trabajos Prácticos: Gronoskis Alejandro Jefe de Trabajos Prácticos: Auliel María Inés TRANSFERENCIA

Más detalles

Sistema diurno de refrigeración pasiva por radiación

Sistema diurno de refrigeración pasiva por radiación Sistema diurno de refrigeración pasiva por radiación I. INTRODUCCIÓN Trabajo previo de referencia II. PRINCIPIOS FÍSICOS Balance energético - Radiación entre dos cuerpos III. GEOMETRÍA DEL REFLECTOR Proceso

Más detalles

T 1 T 2. x L. Con frecuencia es importante el valor de la resistencia térmica multiplicado por el área de flujo de calor, en este caso sera

T 1 T 2. x L. Con frecuencia es importante el valor de la resistencia térmica multiplicado por el área de flujo de calor, en este caso sera 1. ey de Fourier ué flujo de calor es necesario hacer pasar a través de una barra circular de madera de 5 cm de diámetro y 10 cm de longitud, cuya temperatura en los extremos es de 50 C y 10 C en sus extremos?

Más detalles

km. , considerando que es un cuerpo negro calentado por el Sol. 2. Determinar la temperatura del suelo de Marte, T (1)

km. , considerando que es un cuerpo negro calentado por el Sol. 2. Determinar la temperatura del suelo de Marte, T (1) Problema 1 El planeta Marte, de radio R M = 3400 m rota alrededor del sol a lo largo de una órbita casi circular de radio r M = 2,28 10 8 m. Las medidas efectuadas por la sonda Viing I permiten afirmar

Más detalles

Conductividad en presencia de campo eléctrico

Conductividad en presencia de campo eléctrico 6. Fenómenos de transporte Fenómenos de transporte Conductividad térmicat Viscosidad Difusión n sedimentación Conductividad en presencia de campo eléctrico UAM 01-13. Química Física. Transporte CT V 1

Más detalles

ADAPTACIÓN CURRICULAR TEMA 11 CIENCIAS NATURALES 2º E.S.O

ADAPTACIÓN CURRICULAR TEMA 11 CIENCIAS NATURALES 2º E.S.O ADAPTACIÓN CURRICULAR TEMA 11 CIENCIAS NATURALES 2º E.S.O Calor y temperatura 1ª) Qué es la energía térmica? La energía térmica es la energía que posee un cuerpo (o un sistema material) debido al movimiento

Más detalles

- RADIACIÓN SOLAR. Leyes. Variabilidad. Balance de la radiación solar entre la que llega y sale de la superficie terrestre.

- RADIACIÓN SOLAR. Leyes. Variabilidad. Balance de la radiación solar entre la que llega y sale de la superficie terrestre. - RADIACIÓN SOLAR. Leyes. Variabilidad. Balance de la radiación solar entre la que llega y sale de la superficie terrestre. La radiación solar es el conjunto de radiaciones electromagnéticas emitidas por

Más detalles

U.N.A.M. ESPECIALIZACION EN HELIODISEÑO. ARQ. FRANCISCO AMANTE VILLASEÑOR.

U.N.A.M. ESPECIALIZACION EN HELIODISEÑO. ARQ. FRANCISCO AMANTE VILLASEÑOR. U.N.A.M. ESPECIALIZACION EN HELIODISEÑO. ARQ. FRANCISCO AMANTE VILLASEÑOR. ASPECTOS BIOCLIMATICOS DEL CUERPO HUMANO. Características del Cuerpo Humano: Bomba de calor. Perdida constante de calor a una

Más detalles

DISEÑO DE CÁMARAS FRIGORÍFICAS

DISEÑO DE CÁMARAS FRIGORÍFICAS DISEÑO DE CÁMARAS FRIGORÍFICAS OBJETIVO Velocidad de extracción de Calor velocidad de ingreso de calor El aire en el interior debe ser mantenido a temperatura constante de diseño. El evaporador es diseñado

Más detalles

TEMA 4: BALANCE GLOBAL DE ENERGÍA EN LA TIERRA

TEMA 4: BALANCE GLOBAL DE ENERGÍA EN LA TIERRA TEMA 4: BALANCE GLOBAL DE ENERGÍA EN LA TIERRA Objetivos: (1) Describir el balance de energía global en la Tierra considerando la existencia de flujos de energía radiativos y no radiativos (flujo de calor

Más detalles

ANEJO 9: CÁLCULO CUANTITATIVO DE FLUJOS

ANEJO 9: CÁLCULO CUANTITATIVO DE FLUJOS Anejo 9: cálculo cuantitativo de flujos ANEJO 9: CÁLCULO CUANTITATIVO DE FLUJOS I Anejo 9: cálculo cuantitativo de flujos Para el cálculo cuantitativo de los flujos a partir de los datos experimentales

Más detalles

Transferencia de Calor por Radiación

Transferencia de Calor por Radiación INSTITUTO TECNOLÓGICO de Durango Transferencia de Calor por Radiación Dr. Carlos Francisco Cruz Fierro Revisión 1 67004.97 12-jun-12 1 INTRODUCCIÓN A LA RADIACIÓN ELECTROMAGNÉTICA 2 Dualidad de la Luz

Más detalles

Análisis del patio en la ciudad de Santo Domingo. Del clima cálido-seco al clima cálido-húmedo.

Análisis del patio en la ciudad de Santo Domingo. Del clima cálido-seco al clima cálido-húmedo. Análisis del patio en la ciudad de Santo Domingo. Del clima cálido-seco al clima cálido-húmedo. Universidad Politécnica de Cataluña Escuela Técnica Superior de Arquitectura de Barcelona Departamento de

Más detalles

Ciclo Hidrológico. Describe las transformaciones del agua al pasar por los distintos reservorios.

Ciclo Hidrológico. Describe las transformaciones del agua al pasar por los distintos reservorios. Ciclo Hidrológico Describe las transformaciones del agua al pasar por los distintos reservorios. Los océanos contienen el 97.5% del agua sobre la Tierra, los continentes el 2.4%, y la atmósfera menos del.001%.

Más detalles

TRANSFERENCIA DE CALOR POR CONVECCIÓN

TRANSFERENCIA DE CALOR POR CONVECCIÓN MARZO, 2016 REPÚBLICA BOLIVARIANA DE VENEZUELA MINISTERIO DEL PODER POPULAR PARA LA DEFENSA UNIVERSIDAD NACIONAL EXPERIMENTAL POLITÉCNICA DE LA FUERZA ARMADA NACIONAL BOLIVARIANA CÁTEDRA: TRANSFERENCIA

Más detalles

Guía de acristalamientos y cerramientos acristalados

Guía de acristalamientos y cerramientos acristalados Guía de acristalamientos y cerramientos acristalados Soluciones de acristalamiento Barcelona 22 de Abril de 2009 Guía de acristalamientos y cerramientos acristalados 1. Objeto y Contenido 2. Campo de aplicación

Más detalles

PROYECTO DE INVESTIGACION por Universidad Nacional del Callao se encuentra bajo una Licencia Creative Commons Atribución-NoComercial-SinDerivadas 2.

PROYECTO DE INVESTIGACION por Universidad Nacional del Callao se encuentra bajo una Licencia Creative Commons Atribución-NoComercial-SinDerivadas 2. PROYECTO DE INVESTIGACION por Universidad Nacional del Callao se encuentra bajo una Licencia Creative Commons Atribución-NoComercial-SinDerivadas 2.5 Perú. Permisos que vayan más allá de lo cubierto por

Más detalles

factores que influyen en el clima

factores que influyen en el clima factores que influyen en el clima Movimientos de la tierra Radiación solar Superficies de agua MEDIO AMBIENTE NATURAL CLIMA SUELO TOPGRAFIA Topografía Vegetación Urbanización EDIFICIO IMPOSICIONES MEDIO

Más detalles

SISTEMAS ELECTRÓNICOS ANALÓGICOS Y DIGITALES

SISTEMAS ELECTRÓNICOS ANALÓGICOS Y DIGITALES SISTEMAS ELECTRÓNICOS ANALÓGICOS Y DIGITALES DISIPACIÓN DEL CALOR: Introducción Mecanismos de propagación del calor Modelo simplificado de la transferencia de calor Especificaciones térmicas de los semiconductores

Más detalles

Módulo 2: Termodinámica. mica Temperatura y calor

Módulo 2: Termodinámica. mica Temperatura y calor Módulo 2: Termodinámica mica Temperatura y calor 1 Termodinámica y estado interno Para describir el estado externo de un objeto o sistema se utilizan en mecánica magnitudes físicas como la masa, la velocidad

Más detalles

Energía y primera ley de la termodinámica

Energía y primera ley de la termodinámica Unidad II Energía y primera ley de la termodinámica - Trabajo. Calor En la unidad 1 se hizo una clasificación de los sistemas en función de que si sus paredes son atravesadas por masa o no, aquí ampliamos

Más detalles

Ergonomía y Arquitectura ambiental en la vivienda. Universidad de Santiago de Chile * Escuela de Arquitectura LAB8 *

Ergonomía y Arquitectura ambiental en la vivienda. Universidad de Santiago de Chile * Escuela de Arquitectura LAB8 * Ergonomía y Arquitectura ambiental en la vivienda. Universidad de Santiago de Chile * Escuela de Arquitectura LAB8 * 171109 Contextualización. Qué es la ergonomía y arquitectura ambiental? Ergonomía ambiental:

Más detalles

ORGANIZACIÓN DE LA MATERIA DE FLUIDOS Y CALOR TEMARIO

ORGANIZACIÓN DE LA MATERIA DE FLUIDOS Y CALOR TEMARIO ORGANIZACIÓN DE LA MATERIA DE FLUIDOS Y CALOR TEMARIO A. FLUIDOS. I. Fluidos en Reposo. 1 Estados de agregación de la materia y concepto de fluido 2 Características de un fluido en reposo. 3 Densidad de

Más detalles

Instalaciones Termohidráulicas y Eléctricas Curso 4º Lección Cargas Térmicas 1

Instalaciones Termohidráulicas y Eléctricas Curso 4º Lección Cargas Térmicas 1 LECCION 2: CARGAS TÉRMICAS 2.1. Introducción. 2.2.Cálculo de cargas térmicas 2.3 Método de cálculo de cargas térmicas 2.4 Cálculo de cargas térmicas de calefacción 2.5 Cálculo de cargas térmicas de refrigeración.

Más detalles

Arquitectura. Fenómenos térmicos en la construcción

Arquitectura. Fenómenos térmicos en la construcción Arquitectura Fenómenos térmicos en la construcción Posee gran importancia en cualquier proyecto arquitectónico. En forma promedio para obtener un ambiente optimo desde el punto de vista térmico una persona

Más detalles

Ingeniería Térmica y de Fluidos (II)

Ingeniería Térmica y de Fluidos (II) Ingeniería Térmica y de Fluidos II) T9.- Superficies Ampliadas de Sección Transversal Cte Las trasparencias son el material de apoyo del profesor para impartir la clase. No son apuntes de la asignatura.

Más detalles

Diseño Termohidráulico de Intercambiadores de Calor.

Diseño Termohidráulico de Intercambiadores de Calor. Diseño Termohidráulico de Intercambiadores de Calor. Horario de clases: Martes y Jueves, 10:00-13:00 hrs. Horario de asesorías: Miércoles de 12:00-14:00 hrs. Aula: B-306 Trimestre: 13I Curso: 2122096 1

Más detalles

Leonel Lira Cortes Laboratorio de Propiedades Termofísicas. Centro Nacional de Metrología

Leonel Lira Cortes Laboratorio de Propiedades Termofísicas. Centro Nacional de Metrología MEDICIÓN DE LA CONDUCTIVIDAD TÉRMICA EN MATERIALES SÓLIDOS DE CONSTRUCCIÓN Leonel Lira Cortes Laboratorio de Propiedades Termofísicas División Termometría, Área Eléctrica Centro Nacional de Metrología

Más detalles

Módulo 2: Termodinámica Segundo principio de la Termodinámica

Módulo 2: Termodinámica Segundo principio de la Termodinámica Módulo 2: Termodinámica Segundo principio de la Termodinámica 1 Transferencias de energía Sabemos por el primer principio de la Termodinámica que la energía de un sistema se conserva. Sólo que en diferentes

Más detalles

TERMODINÁMICA 1. EL CALOR 2. LA TEMPERATURA 3. CONCEPTO DE TERMODINÁMICA 4. PRIMER PRINCIPIO 5. SEGUNDO PRINCIPIO 6.

TERMODINÁMICA 1. EL CALOR 2. LA TEMPERATURA 3. CONCEPTO DE TERMODINÁMICA 4. PRIMER PRINCIPIO 5. SEGUNDO PRINCIPIO 6. TERMODINÁMICA 1. EL CALOR 2. LA TEMPERATURA 3. CONCEPTO DE TERMODINÁMICA 4. PRIMER PRINCIPIO 5. SEGUNDO PRINCIPIO 6. CICLO DE CARNOT 7. DIAGRAMAS ENTRÓPICOS 8. ENTROPIA Y DEGRADACIÓN ENERGÉTICA INTRODUCCIÓN

Más detalles

UNIDAD III NECESIDADES HÍDRICAS DE LOS CULTIVOS

UNIDAD III NECESIDADES HÍDRICAS DE LOS CULTIVOS Método de Penman Monteith El método de Penman Monteith puede considerarse como el método estandar de todos los métodos combinados para estimar la evapotranspiración (ET) del cultivo de referencia. La mayoría

Más detalles

CAPÍTULO VI TRANSPORTE DE ENERGÍA POR RADIACIÓN

CAPÍTULO VI TRANSPORTE DE ENERGÍA POR RADIACIÓN CAPÍTULO VI TRANSPORTE DE ENERGÍA POR RADIACIÓN 6.1 El espectro de radiación electromagnética El transporte de energía por conducción y convección necesitan la existencia de un medio material. La conducción

Más detalles

Climatización por Suelo Radiante/Refrescante de Saunier Duval

Climatización por Suelo Radiante/Refrescante de Saunier Duval Climatización por Suelo Radiante/Refrescante de Saunier Duval 1. Introducción 2. Confort 3. Simulación mediante Fluent del comportamiento de una instalación 1. Calefacción 2. Refrigeración 4. Ventajas

Más detalles

11/MARZO PROF.. JUAN JOSÉ CORACE

11/MARZO PROF.. JUAN JOSÉ CORACE UNIVERSIDAD NACIONAL DEL NORDESTE FACULTAD DE INGENIERÍA DEPARTAMENTO DE FÍSICAF Y QUÍMICA CURSO FÍSICAF II 2013 CLASE I 11/MARZO PROF.. JUAN JOSÉ CORACE FISICA II SISTEMAS MATERIALES Y SISTEMAS TERMODINÁMICOS.

Más detalles

Calor. El calor es la energía en tránsito entre dos cuerpos que difieren en la temperatura ( Tº).

Calor. El calor es la energía en tránsito entre dos cuerpos que difieren en la temperatura ( Tº). Objetivos Medir el calor en sus respectivas unidades. Definir los conceptos de capacidad calórica y calor específico. Interpretar las relaciones de estos conceptos con la transmisión del calor. Comprender

Más detalles

Necesidades energéticas del invernadero en periodos fríos. Juan Carlos López Hernández FUNDACION CAJAMAR

Necesidades energéticas del invernadero en periodos fríos. Juan Carlos López Hernández FUNDACION CAJAMAR Necesidades energéticas del invernadero en periodos fríos Juan Carlos López Hernández FUNDACION CAJAMAR Niveles inferiores a la temperatura mínima biológica provocan: Reducción del transporte y distribución

Más detalles

ARQUITECTURA & MEDIO AMBIENTE : estrategias de diseño FORMA GENERAL DEL EDIFICIO ENVOLVENTE ESPACIALIDAD INTERIOR ENTORNO. A&MA;ed.

ARQUITECTURA & MEDIO AMBIENTE : estrategias de diseño FORMA GENERAL DEL EDIFICIO ENVOLVENTE ESPACIALIDAD INTERIOR ENTORNO. A&MA;ed. FORMA GENERAL DEL EDIFICIO ENVOLVENTE ESPACIALIDAD INTERIOR ENTORNO Determinan la permeabilidad del edificio a las condiciones climáticas externas. ASENTAMIENTO AISLAMIENTO ADOSAMIENTO TERSURA PESADEZ

Más detalles

prohibida la reproducción total o parcial 1

prohibida la reproducción total o parcial 1 II Ciclo de Eficiencia Energética Renovación de ventanas. Cristales para el ahorro de calefacción y aire acondicionado. 2012_10_01 Eduardo Mª De Ramos Vilariño Director CITAV Consumo de Energía Fuente:

Más detalles

ESTUDIO TERMOGRÁFICO COMPARATIVO DE PINTURA PLÁSTICA COMERCIAL CON PINTURA TÉRMICA MARCA SUBERLEV (VALENCIA)

ESTUDIO TERMOGRÁFICO COMPARATIVO DE PINTURA PLÁSTICA COMERCIAL CON PINTURA TÉRMICA MARCA SUBERLEV (VALENCIA) ESTUDIO TERMOGRÁFICO COMPARATIVO DE PINTURA PLÁSTICA COMERCIAL CON PINTURA TÉRMICA MARCA SUBERLEV (VALENCIA) ANÁLISIS Datos del análisis: Análisis de comportamiento de pinturas al calor irradiado. Una

Más detalles

Carrera: EMM Participantes Representante de las academias de ingeniería Electromecánica de los Institutos Tecnológicos.

Carrera: EMM Participantes Representante de las academias de ingeniería Electromecánica de los Institutos Tecnológicos. 1.- DATOS DE LA ASIGNATURA Nombre de la asignatura: Carrera: Clave de la asignatura: Horas teoría-horas práctica-créditos Transferencia de Calor. Ingeniería Electromecánica EMM - 0536 3 2 8 2.- HISTORIA

Más detalles

radiación Transferencia de Calor p. 1/1

radiación Transferencia de Calor p. 1/1 Transferencia de Calor p. 1/1 radiación la radiación térmica corresponde a la parte del espectro electromagnético con logitudes de onda por encima del bajo UV y el visible hasta las microondas... Transferencia

Más detalles

Dinámica de Fluidos. Mecánica y Fluidos VERANO

Dinámica de Fluidos. Mecánica y Fluidos VERANO Dinámica de Fluidos Mecánica y Fluidos VERANO 1 Temas Tipos de Movimiento Ecuación de Continuidad Ecuación de Bernouilli Circulación de Fluidos Viscosos 2 TIPOS DE MOVIMIENTO Régimen Laminar: El flujo

Más detalles

Termodinámica y Máquinas Térmicas

Termodinámica y Máquinas Térmicas Termodinámica y Máquinas Térmicas Tema 04. Funciones de Estado Inmaculada Fernández Diego Severiano F. Pérez Remesal Carlos J. Renedo Estébanez DPTO. DE INGENIERÍA ELÉCTRICA Y ENERGÉTICA Este tema se publica

Más detalles

Osttuhen Díaz TUTORES: Anna Pagès y Antonio Isalgue

Osttuhen Díaz TUTORES: Anna Pagès y Antonio Isalgue La cubierta metálica en el clima cálido húmedo: análisis del comportamiento térmico y efecto en el confort del techo de zinc de la vivienda vernácula dominicana Osttuhen Díaz TUTORES: Anna Pagès y Antonio

Más detalles

ESTRÉS TÉRMICO POR CALOR POR FRIO

ESTRÉS TÉRMICO POR CALOR POR FRIO ESTRÉS TÉRMICO POR CALOR POR FRIO Tensión térmica Variación de la temperatura normal del cuerpo debido al calor procedente del ambiente de trabajo. Objetivo principal de la gestión del estrés térmico:

Más detalles

Termodinámica. Calor y Temperatura

Termodinámica. Calor y Temperatura Termodinámica Calor y Temperatura 1 Temas 1. TEMPERATURA Y LEY CERO. 1.1 Equilibrio Térmico y ley cero de la termodinámica. 1.2 Concepto de temperatura. 1.3 Tipos de termómetros. 1.4 Escalas de temperatura.

Más detalles

III.- COLECTORES DE PLACA PLANA

III.- COLECTORES DE PLACA PLANA III.- COLECTORES DE PLACA PLANA III..- INTRODUCCIÓN Un colector solar transforma la energía solar incidente en otra forma de energía útil. Difiere de un intercambiador de calor convencional en que en éstos

Más detalles

Las ventanas de aluminio con Ruptura de Puente Térmico.

Las ventanas de aluminio con Ruptura de Puente Térmico. Las ventanas de aluminio con Ruptura de Puente Térmico. El grupo Technoform. Fabricación y distribución de perfiles de poliamida para la RPT en cerramientos de aluminio. Fabricación de perfiles intercalarios

Más detalles

Shell Térmico Oil B. Aceite para transferencia térmica

Shell Térmico Oil B. Aceite para transferencia térmica Shell Térmico B es un aceite mineral puro de baja viscosidad, baja tensión de vapor y alta resistencia a la oxidación desarrollado para transferencia de calor ya sea en sistemas de calefacción cerrados

Más detalles

Diseño, Construcción y Evaluación de un Reflector Solar Fresnel de Concentración de Foco Lineal para Generar Vapor de Agua

Diseño, Construcción y Evaluación de un Reflector Solar Fresnel de Concentración de Foco Lineal para Generar Vapor de Agua Diseño, Construcción y Evaluación de un Reflector Solar Fresnel de Concentración de Foco Lineal para Generar Vapor de Agua Presentado por: Jorge Choque Chacolla Lic. Física Aplicada Universidad Nacional

Más detalles

Tc / 5 = Tf - 32 / 9. T = Tc + 273

Tc / 5 = Tf - 32 / 9. T = Tc + 273 ENERGIA TERMICA Energía Interna ( U ) : Es la energía total de las partículas que lo constituyen, es decir, la suma de todas las formas de energía que poseen sus partículas; átomos, moléculas e iones.

Más detalles

La regulación de la temperatura corporal

La regulación de la temperatura corporal La regulación de la temperatura corporal Termorregulación: Control de la temperatura corporal REGULACIÓN CONTROL Prof. Tomás Quesada Departamento de Fisiología Facultad de Medicina UMU Claudio Bernard

Más detalles

Parámetros de diseño de la Chimenea Solar

Parámetros de diseño de la Chimenea Solar Parámetros de diseño de la Chimenea Solar Juan Carlos León Tutores: Dra. Helena Coch Roura Dr. Antonio Isalgué Buxeda Máster en Arquitectura Energía y Medio Ambiente Universidad Politécnica de Cataluña

Más detalles

ÍNDICE 1. QUÉ ES LA ENERGÍA? 2. FORMAS O CLASES DE ENERGÍA 3. PRINCIPIO DE CONSERVACIÓN DE LA ENERGÍA

ÍNDICE 1. QUÉ ES LA ENERGÍA? 2. FORMAS O CLASES DE ENERGÍA 3. PRINCIPIO DE CONSERVACIÓN DE LA ENERGÍA TECNOLOGÍA INDUSTRIAL ÍNDICE 1. QUÉ ES LA ENERGÍA? 2. FORMAS O CLASES DE ENERGÍA 3. PRINCIPIO DE CONSERVACIÓN DE LA ENERGÍA 4. TRANSFORMACIONES ENERGÉTICAS 5. FUENTES DE ENERGÍA 6. IMPORTANCIA DE LA ENERGÍA

Más detalles

Bioenergética e introducción al metabolismo Departamento de Bioquímica Noviembre de 2005

Bioenergética e introducción al metabolismo Departamento de Bioquímica Noviembre de 2005 U.T.I. Biología Celular Bioenergética e introducción al metabolismo Departamento de Bioquímica Noviembre de 2005 Definiciones LA TERMODINAMICA ES LA CIENCIA QUE ESTUDIA LA ENERGIA Y SUS TRANSFORMACIONES

Más detalles

1. Calcula la energía cinética de un vehículo de 1000 kg de masa que circula a una velocidad de 120 km/h.

1. Calcula la energía cinética de un vehículo de 1000 kg de masa que circula a una velocidad de 120 km/h. SISTEMA DE UNIDADES EQUIVALENCIAS DE UNIDADES DE ENERGÍA 1 cal = 4,18 J 1 J = 0,24 cal 1Kwh = 3,6 x 10 6 J PROBLEMAS SOBRE ENERGÍA MECÁNICA FÓRMULAS: Energía potencial gravitatoria:. Energía cinética:.

Más detalles

CIENCIAS DE LA TIERRA Y MEDIOAMBIENTALES Ejercicios Bloque 2: La atmósfera. Preguntas de aplicación:

CIENCIAS DE LA TIERRA Y MEDIOAMBIENTALES Ejercicios Bloque 2: La atmósfera. Preguntas de aplicación: CIENCIAS DE LA TIERRA Y MEDIOAMBIENTALES Ejercicios Bloque 2: La atmósfera Preguntas de aplicación: 1 2 Una masa de aire a 20 ºC y 12,5 g/m3 de humedad, situada a 100 m de altura sobre el nivel del mar,

Más detalles

FIS Bases de la Mecánica Cuántica

FIS Bases de la Mecánica Cuántica FIS-433-1 Bases de la Mecánica Cuántica Qué es la Teoría Cuántica? La teoría cuántica es el conjunto de ideas más exitoso jamás concebido por seres humanos. Por medio de esta teoría tenemos la capacidad

Más detalles

UNIDAD I. EL MUNDO EN QUE VIVIMOS

UNIDAD I. EL MUNDO EN QUE VIVIMOS ÍNDICE UNIDAD I. EL MUNDO EN QUE VIVIMOS Capítulo 1. Estructura de la materia 3 1-1. La materia, 3. 1-2. Los elementos químicos, 3. 1-3. Atomos, 5. 1-4. Isótopos, 7. 1-5. Moléculas, 8. 1-6. Partículas

Más detalles

INDICE Capítulo 1. Mediciones Capítulo 2. Movimiento Unidimensional Capítulo 3. Vectores Capítulo 4. Movimiento Bidimensional y Tridimensional

INDICE Capítulo 1. Mediciones Capítulo 2. Movimiento Unidimensional Capítulo 3. Vectores Capítulo 4. Movimiento Bidimensional y Tridimensional INDICE Capítulo 1. Mediciones 1 1.1. Las cantidades físicas, patrones y unidades 1 1.2. El sistema internacional de unidades 2 1.3. Patrón de tiempo 3 1.4. Patrón de masa 7 1.6. Precisión y cifras significativas

Más detalles

TERMODINÁMICA CICLOS III. CICLO DE CARNOT

TERMODINÁMICA CICLOS III. CICLO DE CARNOT TERMODINÁMICA CICLOS III. CICLO DE CARNOT GIRALDO TORO REVISÓ PhD. CARLOS A. ACEVEDO PRESENTACIÓN HECHA EXCLUIVAMENTE CON EL FIN DE FACILITAR EL ESTUDIO. MEDELLÍN 2016 CICLOS DE CARNOT. GIRALDO T. 2 Ciclo

Más detalles

INDICE 1.- CÁLCULO DE CHIMENEA DE EVACUACIÓN DE HUMOS SEGÚN LA NORMA EN DATOS DE PARTIDA... 2

INDICE 1.- CÁLCULO DE CHIMENEA DE EVACUACIÓN DE HUMOS SEGÚN LA NORMA EN DATOS DE PARTIDA... 2 INDICE 1.- CÁLCULO DE CHIMENEA DE EVACUACIÓN DE HUMOS SEGÚN LA NORMA EN 13384-1.... 2 1.1.- DATOS DE PARTIDA.... 2 1.2.- CAUDAL DE LOS PRODUCTOS DE COMBUSTIÓN.... 2 1.3.- DENSIDAD MEDIA DE LOS HUMOS...

Más detalles

F. Aclarando conceptos sobre termodinámica

F. Aclarando conceptos sobre termodinámica IES Antonio Glez Glez Principios de máquinas Página 1 F. Aclarando conceptos sobre termodinámica Termodinámica La termodinámica es la parte de la física que analiza los fenómenos en los que interviene

Más detalles

Quemadores. Ahorro energético con seguridad. Combustión Quemadores digitales Emisiones de NOx Variación de velocidad Control de O2 Caso práctico

Quemadores. Ahorro energético con seguridad. Combustión Quemadores digitales Emisiones de NOx Variación de velocidad Control de O2 Caso práctico Quemadores Ahorro energético con seguridad Combustión Quemadores digitales Emisiones de NOx Variación de velocidad Control de O2 Caso práctico COMBUSTIÓN: Equilibrio rendimiento / emisiones Rendimiento

Más detalles

Problema 1. Problema 2

Problema 1. Problema 2 Problemas de clase, octubre 2016, V1 Problema 1 Una máquina frigorífica utiliza el ciclo estándar de compresión de vapor. Produce 50 kw de refrigeración utilizando como refrigerante R-22, si su temperatura

Más detalles

TÍTULO: VENTILACIÓN Y TEMPERATURA INSTITUTO SUPERIOR PEDAGOGICO ENRIQUE JOSE VARONA, LA HABANA

TÍTULO: VENTILACIÓN Y TEMPERATURA INSTITUTO SUPERIOR PEDAGOGICO ENRIQUE JOSE VARONA, LA HABANA TÍTULO: VENTILACIÓN Y TEMPERATURA AUTOR: PROFESOR TITULAR INSTITUTO SUPERIOR PEDAGOGICO ENRIQUE JOSE VARONA, LA HABANA Ambiente Térmico Cambios Fisiológicos y Psicomotores (Cambios ambientales extremos)

Más detalles

MANUAL DE LABORATORIO DE FÍSICA II 9 EDICION EXPERIENCIA N 8

MANUAL DE LABORATORIO DE FÍSICA II 9 EDICION EXPERIENCIA N 8 CALOR ABSORBIDO/DISIPADO Y CONVECCIÓN EXPERIENCIA N 8 Circulación Atmosférica: Estudia el movimiento del aire a gran escala, y el medio por el cual la energía térmica se distribuye sobre la superficie

Más detalles

Cambio Climático e Impacto en el País y la Región del Biobío. Jorge Jiménez del Rio, Ph.D. Centro de Ciencias Ambientales EULA-CHILE

Cambio Climático e Impacto en el País y la Región del Biobío. Jorge Jiménez del Rio, Ph.D. Centro de Ciencias Ambientales EULA-CHILE Cambio Climático e Impacto en el País y la Región del Biobío Jorge Jiménez del Rio, Ph.D. Centro de Ciencias Ambientales EULA-CHILE Lo que se ha observado en forma directa en las últimas décadas Ultimo

Más detalles

INFORME DE LA SIMULACIÓN COMPUTACIONAL DE LAS ESTRATEGIAS PROPUESTAS POR EL GRUPO ABIO

INFORME DE LA SIMULACIÓN COMPUTACIONAL DE LAS ESTRATEGIAS PROPUESTAS POR EL GRUPO ABIO INFORME DE LA SIMULACIÓN COMPUTACIONAL DE LAS ESTRATEGIAS PROPUESTAS POR EL GRUPO ABIO FASES DE TRABAJO DESARROLLO DE ESTRATEGIAS SIMULACIÓN Y MEJORA DE ESTRATEGIAS OBTENCIÓN DE DATOS EXPERIMENTALES: LABORATORIO

Más detalles

Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Cátedra de Mecánica de los Fluidos. Carrea de Ingeniería Civil

Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Cátedra de Mecánica de los Fluidos. Carrea de Ingeniería Civil Universidad Nacional de Córdoba Facultad de Ciencias Exactas Físicas y Naturales Cátedra de Mecánica de los Fluidos Carrea de Ingeniería Civil FLUJO COMPRESIBLE DR. ING. CARLOS MARCELO GARCÍA 2011 A modo

Más detalles

Indice1. Cap.1 Energía. Cap. 2 Fuentes de Energía. Indice - Pág. 1. Termodinámica para ingenieros PUCP

Indice1. Cap.1 Energía. Cap. 2 Fuentes de Energía. Indice - Pág. 1. Termodinámica para ingenieros PUCP Indice1 Cap.1 Energía INTRODUCCIÓN... 1 La Energía en el Tiempo... 2 1.1 Energía... 5 1.2 Principio de conservación de energía... 5 1.3 Formas de energía... 7 1.4 Transformación de energía... 9 1.5 Unidades

Más detalles

Programa de Transmisión de Calor

Programa de Transmisión de Calor Programa de Transmisión de Calor. Ingeniero Químico Pag. 1 de 6 Programa de Transmisión de Calor Cursos 2011-2012, 2012-2013, 2013-2014 Datos generales Centro E. S. de Ingenieros. Universidad de Sevilla.

Más detalles

LAS LEYES DE LA RADIACIÓN EN LA TIERRA Y EN EL ESPACIO OBJETIVO RESUMEN. GENERACIÓN DE LINEAS: Leyes de Kirchhoff

LAS LEYES DE LA RADIACIÓN EN LA TIERRA Y EN EL ESPACIO OBJETIVO RESUMEN. GENERACIÓN DE LINEAS: Leyes de Kirchhoff LAS LEYES DE LA RADIACIÓN EN LA TIERRA Y EN EL ESPACIO OBJETIVO Aproximarnos a los procesos que absorben y generan radiación electromagnética en la Tierra y en el espacio. Basada en presentación de Tabaré

Más detalles

DESCRIPCIÓN GENÉRICA DE UNA INSTALACIÓN DE ENERGÍA SOLAR TÉRMICA

DESCRIPCIÓN GENÉRICA DE UNA INSTALACIÓN DE ENERGÍA SOLAR TÉRMICA DESCRIPCIÓN GENÉRICA DE UNA INSTALACIÓN DE ENERGÍA SOLAR TÉRMICA DESCRIPCIÓN GENÉRICA DE LA TECNOLOGÍA DE LA ENERGÍA SOLAR TÉRMICA Introducción Un sistema de energía solar térmica es aquel que permite

Más detalles

Aislamiento térmico de redes de tuberías plásticas. Cálculo del espesor (según RITE )

Aislamiento térmico de redes de tuberías plásticas. Cálculo del espesor (según RITE ) Asociación española de fabricantes de tubos y accesorios plásticos InfoTUB N.13-005 diciembre 2013 Aislamiento térmico de redes de tuberías plásticas. Cálculo del espesor (según RITE) 1. Introducción Según

Más detalles

HIDROLOGÍA. CALSE 5: HIDROCLIMATOLOGÍA DE COLOMBIA Segunda parte. Julián David Rojo Hdz. I.C. Msc. Recursos Hidráulicos

HIDROLOGÍA. CALSE 5: HIDROCLIMATOLOGÍA DE COLOMBIA Segunda parte. Julián David Rojo Hdz. I.C. Msc. Recursos Hidráulicos HIDROLOGÍA CALSE 5: HIDROCLIMATOLOGÍA DE COLOMBIA Segunda parte Julián David Rojo Hdz. I.C. Msc. Recursos Hidráulicos 2.2 BALANCE DE ENERGÍA CONTENIDO 2.2.1 Ley de Stefan Boltzman 2.2.2 Radiación solar.

Más detalles

CODIFICACIÓN SENSORES HYDRAS3. Cod Param Parámetro Generaciòn

CODIFICACIÓN SENSORES HYDRAS3. Cod Param Parámetro Generaciòn Sistema de Información Ambiental - SIA Oficina de Informática CODIFICACIÓN SENSORES HYDRAS3 Cod Param Parámetro Generaciòn 27 Humedad aire 2m Se transmite desde campo 28 Humedad aire 2m TX Se transmite

Más detalles

5. Datos de las inspecciones

5. Datos de las inspecciones 5. Datos de las inspecciones Inspección 1: Fecha: 14 de febrero de 2014 Hora: 8:00h Características de los elementos a analizar: 1. Puerta metálica de uno de los almacenes - Material: Chapa metálica pintada.

Más detalles

Características físicas de los medios acuáticos.

Características físicas de los medios acuáticos. La hidrosfera: Agua en continuo movimiento. Contenido Hidrosfera. Origen y distribución Características físicas de los medios acuáticos. El ciclo del agua. Dinámica oceánica. Olas y mareas. Corrientes

Más detalles

FÍSICA 1-2 TEMA 5 Versión impresa. Transferencia de energía

FÍSICA 1-2 TEMA 5 Versión impresa. Transferencia de energía Transferencia de energía FÍSICA 1-2 TEMA 5 Versión impresa CALOR Y TEMPERATURA Muchas veces, la energía de los cuerpos no se manifiesta en forma de trabajo, sino de calor. El calor es un tipo de manifestación

Más detalles

Módulo II Trasferencia del Calor

Módulo II Trasferencia del Calor Módulo II Trasferencia del Calor Bibliografía Recomendada Fundamentals of Heat and Mass Transfer Incropera DeWitt Editorial Wiley Transferencia de Calor B. V. Karlekar Transferencia de Calor J. P. Holman

Más detalles