Secado. evaporación en una corriente gaseosa. Calor Directo. Discontínuo o Lotes. Equipos. Calor Indirecto. Contínuo. Facultad de Ingenieria UBA 1

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Secado. evaporación en una corriente gaseosa. Calor Directo. Discontínuo o Lotes. Equipos. Calor Indirecto. Contínuo. Facultad de Ingenieria UBA 1"

Transcripción

1 Secado Eliminación de la humedad de sólidos y/o líquidospor evaporación en una corriente gaseosa. Equipos Discontínuo o Lotes Contínuo Calor Directo Calor Indirecto Facultad de Ingenieria UBA 1

2 Secado Definiciones Humedad Base Seca: X = kg agua / kg sólido seco Humedad Base Húmeda: x = kg de agua / kg de sólido húmedo = kg. H2O. = X / (1 + X) Kg. Sól. Seco + kg Agua Humedad Ligada Humedad No Ligada Humedad No Ligada: Humedad que ejerce una presión de vapor de equilibrio igual a la del líquido puro (a T cte.) Humedad Ligada: Humedad que ejerceuna presión de vapor de equilibrio menor a la del líquido puro (a T cte.) Humedad Libre: Humedad en exceso de la humedad de equilibrio: ( X X* ). Solo puedo eliminar la humedad libre Humedad de equilibrio: Humedad de un sólido que está en equilibrio con un gas de una dada dd presión parcial de vapor (o de una dada humedad relativa). Facultad de Ingenieria UBA 2

3 Secado X* f(temperatura, tamaño de partícula, a (m 2 /m 3 ), etc) Facultad de Ingenieria UBA 3

4 Secado Discontinuo (por lotes) Ajuste inicial Se desprecia Nc cte Se elimina humedad no ligada. Evaporación en la superficie Secado post crítico se elimina humedad no ligada e inicio humedad ligada Secado post crítico Se elimina humedad ligada. Evaporación en el interior del sólido Facultad de Ingenieria UBA 4

5 Secado Discontinuo (cont.) Velocidad dde Secado Facultad de Ingenieria UBA 5

6 Secado Discontinuo (cont.) Período de Velocidad Constante (B C) Período de Velocidad Decreciente (C E) Integración gráfica Facultad de Ingenieria UBA 6

7 Secado Discontinuo (cont.) Período de Velocidad Decreciente (C E) Facultad de Ingenieria UBA 7

8 Secado Discontinuo (cont.) Período de Velocidad Decreciente (C E) Facultad de Ingenieria UBA 8

9 Secado Discontinuo (cont.) Circulación tangencial del aire Si el calor necesario para realizar la evaporación del agua es aportado exclusivamente por el aire, por convección desde el gas: Solo para Nc = cte Linea psicrométrica Facultad de Ingenieria UBA 9

10 Secado Discontinuo Circulación tangencial (cont.) Si hay varios mecanismos paralelos de transferencia de calor, la temperatura del sólido será distinta de la temperatura de bulbo húmedo ts tw. Facultad de Ingenieria UBA 10

11 Circulación tangencial (cont.) T G = temperatura del gas T S = temperatura del sólido T R = temperatura de la superficie radiante h c = coeficiente de convección de la bandeja A = área de secado A u = área de no secado (bandeja) A m = área media del sólido k m = conductividad de la bandeja k s = conductividad del sólido Z S = altura de sólido que se esta secando Z M = altura de sólido que no se está secando Facultad de Ingenieria UBA 11

12 Circulación tangencial (cont.) Carta psicrométrica Y s = f (Ts) 2 ec. c/ 2 incógnitas Y s y Ts Correlaciones para h: Valores experimentales. G (kg/seg m 2 ) Facultad de Ingenieria UBA 12

13 Circulación Transversal El calor de evaporación proviene fundamentalmente del gas que se enfría (línea psicrométrica.) La humedad en el lecho es función de la posición y del tiempo. (4) (1) (3) (4) (2) (1) 1. Humedad inalterada X = Xinicial 2. X > Xc aún queda humedad no ligada 3. X* < X < Xc zona donde aún tenemos humedad No ligada 4. X = X*. Zona seca donde no queda humedad libre. Facultad de Ingenieria UBA 13

14 Circulación Transversal (cont.) Secado de Humedad No Ligada En general no sale saturado 1 Para un dz de lecho Facultad de Ingenieria UBA 14

15 Circulación Transversal (cont.) Combinando con 1 donde Facultad de Ingenieria UBA 15

16 Circulación Transversal (cont.) Correlaciones para calcular N tg Considerando 0,07 mm < dp < 2,03 mm y Zs > 11,4 mm Considerando 3,2 mm < dp < 20 mm y 10 mm < Zs < 64 mm Facultad de Ingenieria UBA 16

17 Secado Continuo Equipo pequeño en comparación con las cantidades de sólidos a secar. Operación integrada al proceso Secado uniforme Costo unitario es bajo Ss = kg ss / m 2 * h H s = entalpía del sól. Humedo con respecto al sól. seco (kj/kg ss) C s = cap. calorífica ss (kj/c*kg ss) C A = cap. calorífica líquido (kj/c*kg liq.) AH A = calor de humidificación BM) BE) Facultad de Ingenieria UBA 17

18 Secado Continuo Alta Temperatura Zona I: Precalentamiento (no se considera secado) Zona II: la temperatura del sólido se mantiene cte mientras se elimina humedad no ligada superficial. En B se alcanza la humedad crítica (X c ) Zona III: Secado de superficie con manchas secas y de humedad no ligada. Facultad de Ingenieria UBA 18

19 Secado Continuo Alta Temperatura Evolución D C 1 = secado adiabático Si q r y q k = 0 la temperatura del sólido coincide con tsa = tw del gas. Evolución D C 2 = secado con pérdidas de calor Evolución D C 3 = secado con aporte de calor Evolución D C 4 = secado con temperatura de gas cte. Facultad de Ingenieria UBA 19

20 Secado Continuo Alta Temperatura Balance de entalpía para un dz del secador q G calor cedido por el gas q calor entregado al sólido Q pérdidas de calor llamando dt G caída de temperatura debido a dq (excluye pérdidas) Si U = cte con Z = N tog * H tog 1,5 < NOG = N OGi < 2,5 Flujograma Facultad de Ingenieria UBA 20

21 Secado Continuo Baja Temperatura secador Túnel o de cinta (las condiciones del gas varían punto a punto) La zona I se desprecia La zona II se elimina humedad no ligada La zona III se elimina humedad no ligada y ligada En la zona II: X > X C N = Nc = k Y (Y s Y ) Del BM diferencial Facultad de Ingenieria UBA 21

22 Secado Continuo Baja Temperatura secador Túnel o de cinta (cont.) Si no existe radiación, ni conducción, ni pérdidas Ys = Yw (secador adiabático) En la zona III: X < X C Suponiendo N linealmente decreciente Facultad de Ingenieria UBA 22

23 Secado Continuo Baja Temperatura secador Túnel o de cinta (cont.) 2 variables Y, X BM vincula las variables X* despreciable y Ys = Yw = cte. Facultad de Ingenieria UBA 23

24 Secado Continuo Baja Temperatura secador Túnel o de cinta (cont.) Contracorriente Co corriente Facultad de Ingenieria UBA 24

25 Secador de circulación transversal Facutad de Ingenieria UBA 25

26 Secador de bandejas Secador de circulación transversal Secador de circulación transversal Facutad de Ingenieria UBA 26

27 Secador Transversal Secador Turbo Facutad de Ingenieria UBA 27

28 Secador Transversal Secador Rotativo Facutad de Ingenieria UBA 28

29 Secador Rotativo Facutad de Ingenieria UBA 29

30 Facutad de Ingenieria UBA 30

31 Flujograma Secador Rotatorio Facultad de Ingenieria UBA 31

32 Flujograma Secador Rotatorio Facultad de Ingenieria UBA 32

TRANSFERENCIA DE MASA II CURVA DE SECADO

TRANSFERENCIA DE MASA II CURVA DE SECADO TANFEENIA DE MAA II UVA DE EADO EJEMPLO DE UVA DE EADO Para determinar la factibilidad de secar cierto producto alimenticio, se obtuvieron datos de secado con un secador de bandejas y flujo de aire sobre

Más detalles

PRACTICA No. 1. SECADO DE SÓLIDOS

PRACTICA No. 1. SECADO DE SÓLIDOS UNIVERSIDAD NACIONAL EXPERIMENTAL FRANCISCO DE MIRANDA ÁREA DE TECNOLOGIA COMPLEJO ACADEMICO EL SABINO DEPARTAMENTO DE ENERGETICA LABORATORIO DE OPERACIONES UNITARIAS PRACTICA No. 1. SECADO DE SÓLIDOS

Más detalles

El proceso de secado consiste en la remoción de humedad de una sustancia, involucrando los fenómenos de transferencia de calor y masa, en forma

El proceso de secado consiste en la remoción de humedad de una sustancia, involucrando los fenómenos de transferencia de calor y masa, en forma SECADOR DE BANDEJA El proceso El proceso de secado consiste en la remoción de humedad de una sustancia, involucrando los fenómenos de transferencia de calor y masa, en forma simultanea. La transferencia

Más detalles

TRANSFERENCIA DE MASA II EQUIPOS DE SECADO

TRANSFERENCIA DE MASA II EQUIPOS DE SECADO RANSFERENCIA DE MASA II EQUIPOS DE SECADO CLASIFICACIÓN DE LAS OPERACIONES DE SECADO MÉODO DE OPERACIÓN LOES CONINUO CLASIFICACIÓN DE LAS OPERACIONES DE SECADO MÉODO DE OBENCIÓN DEL CALOR SECADORES DIRECOS

Más detalles

TRANSFERENCIA DE MASA II OPERACIONES DE HUMIDIFICACION

TRANSFERENCIA DE MASA II OPERACIONES DE HUMIDIFICACION TRANSFERENCIA DE MASA II OPERACIONES DE HUMIDIFICACION OPERACIONES DE HUMIDIFICACIÓN Las operaciones consideradas se ocupan de la transferencia de masa interfacial y de energía, que resultan cuando un

Más detalles

PRÁCTICA 10. TORRE DE REFRIGERACIÓN POR AGUA

PRÁCTICA 10. TORRE DE REFRIGERACIÓN POR AGUA PRÁCTICA 10. TORRE DE REFRIGERACIÓN POR AGUA OBJETIVO GENERAL: Familiarizar al alumno con los sistemas de torres de refrigeración para evacuar el calor excedente del agua. OBJETIVOS ESPECÍFICOS: Investigar

Más detalles

CAPITULO 5 PROCESO DE SECADO. Se entiende por secado de alimentos la extracción deliberada del agua que contienen,

CAPITULO 5 PROCESO DE SECADO. Se entiende por secado de alimentos la extracción deliberada del agua que contienen, CAPITULO 5 PROCESO DE SECADO 5.1 SECADO DE ALIMENTOS Se entiende por secado de alimentos la extracción deliberada del agua que contienen, operación que se lleva a cabo en la mayoría de los casos evaporando

Más detalles

GUIA DE EJERCICIOS DE OPERACIONES UNITARIAS II SECADO

GUIA DE EJERCICIOS DE OPERACIONES UNITARIAS II SECADO LABORATORIO DE OPERACIONES UNITARIAS FACULTAD DE CS QUÍMICAS Y FARMACÉUTICAS UNIVERSIDAD DE CHILE GUIA DE EJERCICIOS DE OPERACIONES UNITARIAS II SECADO 1.- Una plancha de cartón de dimensiones 100 cm x

Más detalles

HUMEDAD ATMOSFÉRICA

HUMEDAD ATMOSFÉRICA www.uwm.edu/~vlarson/research.htm HUMEDAD ATMOSFÉRICA Cantidad de vapor de agua que contiene el aire; es la fuente de precipitaciones; influye en los procesos de evapotranspiración y derretimiento de nieves.

Más detalles

ratorio de Operaciones Unitarias II

ratorio de Operaciones Unitarias II Labor ratorio de Operaciones Unitarias II - 1 - República Bolivariana de Venezuela Ministerio del Poder Popular para la Educación Superior Instituto Universitario de Tecnología Alonso Gamero Laboratorio

Más detalles

Termodinámica y Máquinas Térmicas

Termodinámica y Máquinas Térmicas Termodinámica y Máquinas Térmicas Tema 04. Funciones de Estado Inmaculada Fernández Diego Severiano F. Pérez Remesal Carlos J. Renedo Estébanez DPTO. DE INGENIERÍA ELÉCTRICA Y ENERGÉTICA Este tema se publica

Más detalles

TEMA 1. MECANISMOS BÁSICOS DE TRANSMISIÓN DE CALOR

TEMA 1. MECANISMOS BÁSICOS DE TRANSMISIÓN DE CALOR TEMA 1. MECANISMOS BÁSICOS DE TRANSMISIÓN DE CALOR El calor: Es una forma de energía en tránsito. La Termodinámica y La Transferencia de calor. Diferencias. TERMODINAMICA 1er. Principio.Permite determinar

Más detalles

CAPITULO 5. PROCESO DE SECADO. El secado se describe como un proceso de eliminación de substancias volátiles (humedad)

CAPITULO 5. PROCESO DE SECADO. El secado se describe como un proceso de eliminación de substancias volátiles (humedad) CAPITULO 5. PROCESO DE SECADO. 5.1 Descripción general del proceso de secado. El secado se describe como un proceso de eliminación de substancias volátiles (humedad) para producir un producto sólido y

Más detalles

UNIDAD IZTAPALAPA DIVISIÓN DE CIENCIAS BASICAS E INGENIERIA INGENIERIA QUIMICA. Dr. Jaime Vernon Carter

UNIDAD IZTAPALAPA DIVISIÓN DE CIENCIAS BASICAS E INGENIERIA INGENIERIA QUIMICA. Dr. Jaime Vernon Carter UNIVERSIDAD AUTONOMA METROPOLITANA UNIDAD IZTAPALAPA DIVISIÓN DE CIENCIAS BASICAS E INGENIERIA INGENIERIA QUIMICA Laboratorio de Operaciones Unitarias Autor: Dr. Jaime Vernon Carter PRACTICA 6 SECADOR

Más detalles

Estas operaciones se designan genéricamente como Humidificación y Deshumidificación.

Estas operaciones se designan genéricamente como Humidificación y Deshumidificación. 1 / 16. OPERACIONES DE HUMIFICACION: Son operaciones de contacto directo entre dos fases inmiscibles (gas/líquido), a diferente temperatura, e involucran transferencia de calor y de masa simultáneas a

Más detalles

El propósito principal de la deshidratación de alimentos es prolongar la durabilidad

El propósito principal de la deshidratación de alimentos es prolongar la durabilidad 1.1 INTRODUCCIÓN El propósito principal de la deshidratación de alimentos es prolongar la durabilidad del producto final. El objetivo primordial del proceso de deshidratación es reducir el contenido de

Más detalles

1 TERMODINAMICA Departamento de Física - UNS Carreras: Ing. Industrial y Mecánica

1 TERMODINAMICA Departamento de Física - UNS Carreras: Ing. Industrial y Mecánica TERMODINAMICA Departamento de Física - UNS Carreras: Ing. Industrial y Mecánica Trabajo Práctico N : PROCESOS Y CICLOS DE POTENCIA DE VAPOR Procesos con vapor ) En un cierto proceso industrial se comprimen

Más detalles

Análisis esquemático simplificado de una torre de enfriamiento.

Análisis esquemático simplificado de una torre de enfriamiento. Análisis esquemático simplificado de una torre de enfriamiento. En el diagrama el aire con una humedad Y 2 y temperatura t 2 entra por el fondo de la torre y la abandona por la parte superior con una humedad

Más detalles

TRANSFERENCIA DE CALOR

TRANSFERENCIA DE CALOR Conducción Convección Radiación TRANSFERENCIA DE CALOR Ing. Rubén Marcano Temperatura es una propiedad que depende del nivel de interacción molecular. Específicamente la temperatura es un reflejo del nivel

Más detalles

SECADO. Mercedes Fernández Arévalo

SECADO. Mercedes Fernández Arévalo SECADO Mercedes Fernández Arévalo INTRODUCCIÓN ELIMINAR LA HUMEDAD CONTENIDA EN MATERIALES SÓLIDOS POR APORTE DE CALOR OBJETIVOS: Conseguir un producto en condiciones óptimas de estabilidad, y/o mejorar

Más detalles

Convección Problemas de convección 1.1. PROBLEMAS DE CONVECCIÓN 1

Convección Problemas de convección 1.1. PROBLEMAS DE CONVECCIÓN 1 1.1. PROBLEMAS DE CONVECCIÓN 1 Convección 1.1. Problemas de convección Problema 1 Una placa cuadrada de 0,1 m de lado se sumerge en un flujo uniforme de aire a presión de 1 bar y 20 C con una velocidad

Más detalles

CAPÍTULO 5 SECADO. Las razones para realizar el secado de un material son tan amplias como la variedad

CAPÍTULO 5 SECADO. Las razones para realizar el secado de un material son tan amplias como la variedad CAPÍTULO 5 SECADO 5.1 Necesidad del secado Las razones para realizar el secado de un material son tan amplias como la variedad de materiales que necesitan o pueden ser secados. Por ejemplo, algunos polvos

Más detalles

TECNOLOGÍA DE SECADO DE LECHE

TECNOLOGÍA DE SECADO DE LECHE INFORME TÉCNICO TECNOLOGÍA DE SECADO DE LECHE 1 tecnología de secado de leche El descubrimiento de secado por spray constituyó un avance sumamente importante en la producción de deshidratados sensibles

Más detalles

MEZCLAS NO REACTIVAS

MEZCLAS NO REACTIVAS 1 UNIVERSIDAD NACIONAL PEDRO RUIZ GALLO FACULTAD DE INGENIERÍA MECÁNICA ELÉCTRICA MEZCLAS NO REACTIVAS En los estudios previos en termodinámica se han centrado en sustancias constituidas por una sola especie

Más detalles

2. LA PRIMERA LEY DE LA TERMODINÁMICA

2. LA PRIMERA LEY DE LA TERMODINÁMICA 1. CONCEPTOS BÁSICOS Y DEFINICIONES l. 1. Naturaleza de la Termodinámica 1.2. Dimensiones y unii2acles 1.3. Sistema, propiedad y estado 1.4. Densidad, volumen específico y densidad relativa 1.5. Presión

Más detalles

TEMPERATURA. E c partículas agitación térmica Tª

TEMPERATURA. E c partículas agitación térmica Tª TEMPERATURA Y CALOR TEMPERATURA Temperatura: de un cuerpo es la magnitud que expresa la agitación térmica de sus partículas que lo forman relacionado con su energía cinética, E c. E c partículas agitación

Más detalles

TEMPERATURA Y CALOR. Oxford 2º ESO

TEMPERATURA Y CALOR. Oxford 2º ESO TEMPERATURA Y CALOR Oxford 2º ESO TEMPERATURA Temperatura: de un cuerpo es la magnitud que expresa la agitación térmica de sus partículas que lo forman relacionado con su energía cinética, E c. E c partículas

Más detalles

TRANSFERENCIA DE MASA II SECADO

TRANSFERENCIA DE MASA II SECADO TRANSFERENCIA DE MASA II SECADO SECADO Constituye uno de los métodos que permite separar un líquido de un sólido. Se entiende por secado como la separación de humedad de los sólidos o de los líquidos por

Más detalles

MÁQUINAS HIDRÁULICAS Y TÉRMICAS TURBOMÁQUINAS TÉRMICAS

MÁQUINAS HIDRÁULICAS Y TÉRMICAS TURBOMÁQUINAS TÉRMICAS 1. LA MÁQUINA TÉRMICA MÁQUINA DE FLUIDO: Es el conjunto de elementos mecánicos que permite intercambiar energía mecánica con el exterior, generalmente a través de un eje, por variación de la energía disponible

Más detalles

Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Cátedra de Mecánica de los Fluidos. Carrea de Ingeniería Civil

Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Cátedra de Mecánica de los Fluidos. Carrea de Ingeniería Civil Universidad Nacional de Córdoba Facultad de Ciencias Exactas Físicas y Naturales Cátedra de Mecánica de los Fluidos Carrea de Ingeniería Civil FLUJO COMPRESIBLE DR. ING. CARLOS MARCELO GARCÍA 2011 A modo

Más detalles

Universidad Tecnológica de Panamá Facultad de Ingenieria Civil

Universidad Tecnológica de Panamá Facultad de Ingenieria Civil Universidad Tecnológica de Panamá Facultad de Ingenieria Civil Tesis: Análisis de los componentes del balance de energía para el cálculo de evapotranspiración en estudios hidrológicos Presentado por: Xiomara

Más detalles

SECADOR SOLAR CON AIRE FORZADO PARA SECADO DE HIPOCOTILOS DE MACA A 30 C, 40 C Y 50 C

SECADOR SOLAR CON AIRE FORZADO PARA SECADO DE HIPOCOTILOS DE MACA A 30 C, 40 C Y 50 C SECADOR SOLAR CON AIRE FORZADO PARA SECADO DE HIPOCOTILOS DE MACA A 30 C, 40 C Y 50 C MSc. Ing. Pedro Bertín Flores Larico UNSA-cer-ee-unas XXII Simposio Peruano de Energía Solar, 2015 Arequipa TIPOS DE

Más detalles

RESPONSABLE DE LA CÁTEDRA

RESPONSABLE DE LA CÁTEDRA CÁTEDRA Q-TERMODINAMICA RESPONSABLE DE LA CÁTEDRA CAIVANO Jorge Omar CARRERA INGENIERÍA QUIMICA CARACTERÍSTICAS DE LA ASIGNATURA PLAN DE ESTUDIOS 2005 ORDENANZA CSU. Nº 1028 OBLIGATORIA ELECTIVA ANUAL

Más detalles

FUNDAMENTOS DE CLIMATIZACIÓN

FUNDAMENTOS DE CLIMATIZACIÓN ok PRIMERAS PÁGINAS LIBRO-DTIE:Maquetaci?n 1 09/03/2010 16:38 Página 1 FUNDAMENTOS DE CLIMATIZACIÓN Para instaladores e ingenieros recién titulados Asociación Técnica Española de Cl imatización y Refrigeración

Más detalles

INDUSTRIAS I HORNO ROTATIVO

INDUSTRIAS I HORNO ROTATIVO INDUSTRIAS I HORNO ROTATIVO Ing. Bruno A. Celano Gomez Abril 2015 HORNO ROTATIVO Continuo Calentamiento Externo Llama libre Aplicaciones: cemento, cal, aluminio, etc. Horno Rotativo Diagrama Horno Rotativo

Más detalles

UNIDAD 1: DISEÑO DE CÁMARAS FRIGORÍFICAS GUIA DE PROBLEMAS RESUELTOS

UNIDAD 1: DISEÑO DE CÁMARAS FRIGORÍFICAS GUIA DE PROBLEMAS RESUELTOS UNIDAD 1: DISEÑO DE CÁMARAS FRIGORÍFICAS GUIA DE PROBLEMAS RESUELTOS 1. Una Cámara de refrigeración para almacenamiento de Kiwi tiene las siguientes dimensiones: 3,6 m x 8 m x 28 m. Fue diseñado para operar

Más detalles

CRITERIOS DE ESPONTANEIDAD

CRITERIOS DE ESPONTANEIDAD CRITERIOS DE ESPONTANEIDAD Con ayuda de la Primera Ley de la Termodinámica podemos considerar el equilibrio de la energía y con La Segunda Ley podemos decidir que procesos pueden ocurrir de manera espontanea,

Más detalles

OPERACIÒN Y CONTROL DEL PROCESO DE SECADO DE MADERA

OPERACIÒN Y CONTROL DEL PROCESO DE SECADO DE MADERA OPERACIÒN Y CONTROL DEL PROCESO DE SECADO DE MADERA Rompamos paradigmas!! El contenido de humedad final de una carga de secado de madera NO ES UNA VARIABE DIRECTA DE CONTROL Es el Resultado de Conducir

Más detalles

Pedro G. Vicente Quiles Área de Máquinas y Motores Térmicos Departamento de Ingeniería de Sistemas Industriales Universidad Miguel Hernández

Pedro G. Vicente Quiles Área de Máquinas y Motores Térmicos Departamento de Ingeniería de Sistemas Industriales Universidad Miguel Hernández BALANCE ENERGÉTICO EN CALDERAS 1 Introducción 2 Funcionamiento de una caldera 3 Pérdidas energéticas en calderas 4 Balance energético en una caldera. Rendimiento energético 5 Ejercicios Pedro G. Vicente

Más detalles

USOS PRODUCTIVOS DE LA ENERGÍA SOLAR. Centro de Energías Renovables y Uso Racional de la Energía Abel Deza

USOS PRODUCTIVOS DE LA ENERGÍA SOLAR. Centro de Energías Renovables y Uso Racional de la Energía Abel Deza USOS PRODUCTIVOS DE LA ENERGÍA SOLAR Centro de Energías Renovables y Uso Racional de la Energía Abel Deza adeza@uni.edu.pe adecauni@hotmail.com USOS PRODUCTIVOS CON ENERGÍA FOTOVOLTAICA Dimensionamiento

Más detalles

EFICIENCIA EN SISTEMAS TÉRMICOS

EFICIENCIA EN SISTEMAS TÉRMICOS EFICIENCIA EN SISTEMAS TÉRMICOS Juan Ricardo Vidal medina, Dr. Ing. Universidad Autónoma de occidente Departamento de energética y mecánica Santiago de Cali, 2013 Energía consumida en forma improductiva

Más detalles

Datos ELV, Fracciones molares de n-c 6 H 14, 1 atm x (líquido) 0,0 0,1 0,3 0,5 0,55 0,7 1,0 y (vapor) 0,0 0,36 0,70 0,85 0,90 0,95 1,0 Sigue

Datos ELV, Fracciones molares de n-c 6 H 14, 1 atm x (líquido) 0,0 0,1 0,3 0,5 0,55 0,7 1,0 y (vapor) 0,0 0,36 0,70 0,85 0,90 0,95 1,0 Sigue Método del polo de operación (I) - Destilación Problemas PROBLEMA 1*. Cierta cantidad de una mezcla de vapor de alcohol etílico y agua, 50 % molar, a una temperatura de 190 ºF, se enfría hasta su punto

Más detalles

AGRADECIMIENTOS DEDICATORIA RESUMEN ABSTRACT

AGRADECIMIENTOS DEDICATORIA RESUMEN ABSTRACT vii ÍNDICE GENERAL Página AGRADECIMIENTOS DEDICATORIA RESUMEN ABSTRACT ÍNDICE ii iii iv v vii Capitulo 1 Introducción 1.1 Antecedentes y motivación 2 1.1.1 Filtro 602 3 1.1.2 Tornillo 5 3 1.1.3 Secador

Más detalles

TEMA 1 Cambios de fase

TEMA 1 Cambios de fase TEMA 1 Cambios de fase 1.1. Introducción CLIMATIZACIÓN: crear y mantener un ambiente térmico en un espacio para desarrollar eficientemente una determinada actividad CONFORT O BIENESTAR: - Térmico - Lumínico

Más detalles

Tabla de Contenidos. 1. Introducción... 19. 2. El agua y su importancia en la vivienda... 29. 1.1. Antecedentes... 19. 1.2. Alcances...

Tabla de Contenidos. 1. Introducción... 19. 2. El agua y su importancia en la vivienda... 29. 1.1. Antecedentes... 19. 1.2. Alcances... Tabla de Contenidos 1. Introducción... 19 1.1. Antecedentes... 19 1.2. Alcances... 19 1.3. La Humedad... 20 1.3.1. Humedad de lluvia... 20 1.3.2. Humedad accidental... 20 1.3.3. Humedad del suelo... 21

Más detalles

PRACTICA Nº 5. Análisis de una columna empacada para absorción gaseosa utilizando un simulador comercial

PRACTICA Nº 5. Análisis de una columna empacada para absorción gaseosa utilizando un simulador comercial UNITARIAS PROGRAMA : INGENIERÍA QUÍMICA PRACTICA Nº 5. Análisis de una columna empacada para absorción gaseosa utilizando un simulador comercial Profesores Ing. Alexander Colina Ing. Carmen Brock Ing.

Más detalles

Balanza: Con alcance de g y aproximación de 0,1 g. Horno eléctrico con control de temperatura con alcance mínimo de C o parrilla de gas.

Balanza: Con alcance de g y aproximación de 0,1 g. Horno eléctrico con control de temperatura con alcance mínimo de C o parrilla de gas. DE AGUA DE AGUA DEL AGREGADO FINO Pagina 1 de 7 I.- Objetivo: Describir la metodología que el laboratorio experimental de ingeniería utiliza para determinar la Masa específica (Densidad) y capacidad de

Más detalles

PROBLEMARIO No. 2. Veinte problemas con respuesta sobre los Temas 3 y 4 [Trabajo y Calor. Primera Ley de la Termodinámica]

PROBLEMARIO No. 2. Veinte problemas con respuesta sobre los Temas 3 y 4 [Trabajo y Calor. Primera Ley de la Termodinámica] Universidad Simón olívar Departamento de Termodinámica y Fenómenos de Transferencia -Junio-007 TF - Termodinámica I Prof. Carlos Castillo PROLEMARIO No. Veinte problemas con respuesta sobre los Temas y

Más detalles

AHORRO DE ENERGÍA EN UNA CALDERA UTILIZANDO

AHORRO DE ENERGÍA EN UNA CALDERA UTILIZANDO AHORRO DE ENERÍA EN UNA CALDERA UTILIZANDO ECONOMIZADORES Javier Armijo C., ilberto Salas C. Facultad de Química e Ingeniería Química, Universidad Nacional Mayor de San Marcos Resumen En el presente trabajo

Más detalles

GUIA DE EJERCICIOS II. (Primera Ley Segunda Ley - Ciclo de Carnot)

GUIA DE EJERCICIOS II. (Primera Ley Segunda Ley - Ciclo de Carnot) UNIVERSIDAD PEDRO DE VALDIVIA TERMODINAMICA. GUIA DE EJERCICIOS II. (Primera Ley Segunda Ley - Ciclo de Carnot) 1. Deducir qué forma adopta la primera ley de la termodinámica aplicada a un gas ideal para

Más detalles

La evaporación,dr en Kg agua/m2*h, de acuerdo a pruebas de laboratorio:

La evaporación,dr en Kg agua/m2*h, de acuerdo a pruebas de laboratorio: Estos problemas sobre secado, en inglés y de origen Finlandia, se descargaron de Internet. Además de traducirlos, se ampliaron las soluciones agregando el diagrama de Mollier y fórmulas alternativas para

Más detalles

C()n()cer- el C()WP()rtamient() del air-e pe..-mite aplicar- cñteñ()s C()r-r-ect()s de manej() en el ac()ndici()namient() y almacenaie..

C()n()cer- el C()WP()rtamient() del air-e pe..-mite aplicar- cñteñ()s C()r-r-ect()s de manej() en el ac()ndici()namient() y almacenaie.. C()n()cer- el C()WP()rtamient() del air-e pe..-mite aplicar- cñteñ()s C()r-r-ect()s de manej() en el ac()ndici()namient() y almacenaie.. Ricardo Muñoz C. Ingeniero Agrónomo M.S. Sicrometría, en términos

Más detalles

Ejercicios relacionados con líquidos y sólidos

Ejercicios relacionados con líquidos y sólidos Ejercicios relacionados con líquidos y sólidos. La presión de vapor del etanol es de 35,3 mmhg a 40 o C y 542,5 mmhg a 70 o C. Calcular el calor molar de vaporización y la presión del etanol a 50 o C.

Más detalles

Conceptos de combustión y combustibles

Conceptos de combustión y combustibles Jornada sobre CALDERAS EFICIENTES EN PROCESOS INDUSTRIALES Conceptos de combustión y combustibles José M. Domínguez Cerdeira Prescripción - Promoción del Gas Gas Natural Distribución SDG, S.A. Madrid,

Más detalles

TEMPERATURA Y CALOR. Tomás Rada Crespo Ph.D.

TEMPERATURA Y CALOR. Tomás Rada Crespo Ph.D. TEMPERATURA Y CALOR Tomás Rada Crespo Ph.D. Temperatura y Calor Tengo Calor!!!! Tengo Frio!!!! Este café esta frío!!!! Uff qué temperatura!!!! Esta gaseosa esta caliente!!!! En el lenguaje cotidiano, es

Más detalles

Práctica No 13. Determinación de la calidad de vapor

Práctica No 13. Determinación de la calidad de vapor Práctica No 13 Determinación de la calidad de vapor 1. Objetivo general: Determinar la cantidad de vapor húmedo generado a presión atmosférica. 2. Marco teórico: Entalpía del sistema: Si un sistema consiste

Más detalles

La radiación es la energía de calor transferida por radiación electromagnética. Depende del medio en el que ocurra, de las temperaturas relativas y

La radiación es la energía de calor transferida por radiación electromagnética. Depende del medio en el que ocurra, de las temperaturas relativas y RADIACIÓN La radiación es la energía de calor transferida por radiación electromagnética. Depende del medio en el que ocurra, de las temperaturas relativas y la superficie que absorba o emita la energía.

Más detalles

BALANCE ENERGÉTICO CLIMATIZACIÓN

BALANCE ENERGÉTICO CLIMATIZACIÓN BALANCE ENERGÉTICO EN INSTALACIONES DE CLIMATIZACIÓN LAS CARGAS INTERNAS CARGA POR ILUMINACIÓN La iluminación de un local a acondicionar constituye una generación interna de calor sensible que debe ser

Más detalles

Sistemas de climatización radiante

Sistemas de climatización radiante Sistemas de climatización radiante El confort térmico Las formas de intercambio de energía entre el ser humano y el entorno son: De qué depende el confort térmico? Según UNE-EN ISO 7730 y 7726 existen

Más detalles

II. REVISIÓN BIBLIOGRÁFICA. Secado generalmente se refiere a la remoción de líquido de un sólido por evaporación ( Perry, 1984)

II. REVISIÓN BIBLIOGRÁFICA. Secado generalmente se refiere a la remoción de líquido de un sólido por evaporación ( Perry, 1984) 2.1 Qué es el secado? Secado generalmente se refiere a la remoción de líquido de un sólido por evaporación ( Perry, 1984) El secado es el proceso más antiguo utilizado para la preservación de alimentos,

Más detalles

Electricidad y calor

Electricidad y calor Electricidad y calor Webpage: http://paginas.fisica.uson.mx/qb 2007 Departamento de Física Universidad de Sonora Temario A. Termodinámica 1. Temperatura y Ley Cero. (3horas) 1. Equilibrio Térmico y ley

Más detalles

Electricidad y calor. Webpage: Departamento de Física Universidad de Sonora

Electricidad y calor. Webpage: Departamento de Física Universidad de Sonora Electricidad y calor Webpage: http://paginas.fisica.uson.mx/qb 2007 Departamento de Física Universidad de Sonora Temario A. Termodinámica 1. Temperatura y Ley Cero. (3horas) 1. Equilibrio Térmico y ley

Más detalles

CIENCIAS DE LA TIERRA Y MEDIOAMBIENTALES Ejercicios Bloque 2: La atmósfera. Preguntas de aplicación:

CIENCIAS DE LA TIERRA Y MEDIOAMBIENTALES Ejercicios Bloque 2: La atmósfera. Preguntas de aplicación: CIENCIAS DE LA TIERRA Y MEDIOAMBIENTALES Ejercicios Bloque 2: La atmósfera Preguntas de aplicación: 1 2 Una masa de aire a 20 ºC y 12,5 g/m3 de humedad, situada a 100 m de altura sobre el nivel del mar,

Más detalles

GUIA N o 2: TRANSMISIÓN DE CALOR Física II

GUIA N o 2: TRANSMISIÓN DE CALOR Física II GUIA N o 2: TRANSMISIÓN DE CALOR Física II Segundo Cuatrimestre 2013 Docentes: Ing. Daniel Valdivia Lic. Maria Ines Auliel Universidad Nacional de Tres de febrero Depto de Ingeniería Sede Caseros II Buenos

Más detalles

LA CONDENSACION EN LA INDUSTRIA ALIMENTARIA

LA CONDENSACION EN LA INDUSTRIA ALIMENTARIA LA CONDENSACION EN LA INDUSTRIA ALIMENTARIA GREGORIO DASSATTI DIEGO MATEO ANTONIO IBARLUCEA COMPOSICION DEL AIRE EL VAPOR DE AGUA EN EL AIRE REAL PROPIEDADES Presión barométrica o presión total, es la

Más detalles

Secado en la Industria del Papel. Nociones Básicas Alfredo Rendina, Argentina

Secado en la Industria del Papel. Nociones Básicas Alfredo Rendina, Argentina Secado en la Industria del Papel. Nociones Básicas Alfredo Rendina, Argentina Buenos Aires Argentina - 20 de Septiembre 2011 Ahorro de energía en el secado del papel Relación costos entre tela y prensas

Más detalles

Respuesta: a) La fracción molar de NaCl es 0,072 b) La concentración másica volumétrica de NaCl es 0,231 g/cc

Respuesta: a) La fracción molar de NaCl es 0,072 b) La concentración másica volumétrica de NaCl es 0,231 g/cc Ejercicio 1: La densidad a 4 ºC de una solución acuosa de NaCl al 20% en peso es 1,155 g/cc a) Calcule la fracción molar de NaCl b) Calcule la concentración másica volumétrica de NaCl La masa molecular

Más detalles

CAPITULO 6 ANALISIS Y ESTUDIO DE SECADO. El secado de sólidos se puede definir de distintas maneras, según el enfoque que se

CAPITULO 6 ANALISIS Y ESTUDIO DE SECADO. El secado de sólidos se puede definir de distintas maneras, según el enfoque que se 52 CAPITULO 6 ANALISIS Y ESTUDIO DE SECADO 6.1 Definición de secado El secado de sólidos se puede definir de distintas maneras, según el enfoque que se desee adoptar. En los estudios más teóricos se pone

Más detalles

PROCESOS ADIABÁTICOS

PROCESOS ADIABÁTICOS PROCESOS ADIABÁTICOS AIRE GAS Leyes de los gases perfectos Masa Sujeto a la acción de las energías mecánica y calorífica Leyes de la termodinámica Ley de los gases p= δrt δ= densidad de gas R= constante

Más detalles

Tutorial de Torres De Enfriamiento

Tutorial de Torres De Enfriamiento Tutorial de Torres De Enfriamiento Indice 1. Principios 2. Teoría de la torre de enfriamiento 3. Torres De Tiro Mecánico 4. Operación De una torre de enfriamiento 5. Torres De Tiro Natural 6. Generalidades

Más detalles

TEMA 2 LA DIVERSIDAD CLIMÁTICA EN ESPAÑA

TEMA 2 LA DIVERSIDAD CLIMÁTICA EN ESPAÑA TEMA 2 LA DIVERSIDAD CLIMÁTICA EN ESPAÑA FACTORES DEL CLIMA: FACTORES GEOGRÁFICOS La latitud la situación de la península la influencia del mar el relieve: la disposición la orientación la altitud FACTORES

Más detalles

Conducción en régimen transitorio

Conducción en régimen transitorio Conducción en régimen transitorio 1.1. Ejemplo: Calefacción de una casa Se propone el estudio de la transferencia de calor entre una casa y el medio que la rodea en régimen estacionario y en régimen transitorio.

Más detalles

Asignatura: TERMODINÁMICA APLICADA

Asignatura: TERMODINÁMICA APLICADA Asignatura: TERMODINÁMICA APLICADA Titulación: I. T. R.E.E. C. y E. Curso (Cuatrimestre): 2º - 2º C Profesor(es) responsable(s): Francisco Montoya Molina Ubicación despacho: Edif. Esc. INGENIERIA AGRONOMICA

Más detalles

Conductividad en presencia de campo eléctrico

Conductividad en presencia de campo eléctrico 6. Fenómenos de transporte Fenómenos de transporte Conductividad térmicat Viscosidad Difusión n sedimentación Conductividad en presencia de campo eléctrico UAM 01-13. Química Física. Transporte CT V 1

Más detalles

Módulo II Trasferencia del Calor

Módulo II Trasferencia del Calor Módulo II Trasferencia del Calor Bibliografía Recomendada Fundamentals of Heat and Mass Transfer Incropera DeWitt Editorial Wiley Transferencia de Calor B. V. Karlekar Transferencia de Calor J. P. Holman

Más detalles

T 1 T 2. x L. Con frecuencia es importante el valor de la resistencia térmica multiplicado por el área de flujo de calor, en este caso sera

T 1 T 2. x L. Con frecuencia es importante el valor de la resistencia térmica multiplicado por el área de flujo de calor, en este caso sera 1. ey de Fourier ué flujo de calor es necesario hacer pasar a través de una barra circular de madera de 5 cm de diámetro y 10 cm de longitud, cuya temperatura en los extremos es de 50 C y 10 C en sus extremos?

Más detalles

Propiedades de sustancias

Propiedades de sustancias Propiedades de sustancias Objetivos Entender conceptos clave... como fase y sustancia pura, principio de estado para sistemas simples compresibles, superfice p-v-t, temperatura de saturación y presión

Más detalles

Sustancia que tiene una composición química fija. Una sustancia pura no tiene que ser de un solo elemento, puede ser mezcla homogénea.

Sustancia que tiene una composición química fija. Una sustancia pura no tiene que ser de un solo elemento, puede ser mezcla homogénea. Sustancia que tiene una composición química fija. Una sustancia pura no tiene que ser de un solo elemento, puede ser mezcla homogénea. Mezcla de aceite y agua Mezcla de hielo y agua Las sustancias existen

Más detalles

convección (4.1) 4.1. fundamentos de la convección Planteamiento de un problema de convección

convección (4.1) 4.1. fundamentos de la convección Planteamiento de un problema de convección convección El modo de transferencia de calor por convección se compone de dos mecanismos de transporte, que son, la transferencia de energía debido al movimiento aleatorio de las moléculas (difusión térmica)

Más detalles

Tema 3. Máquinas Térmicas II

Tema 3. Máquinas Térmicas II Asignatura: Tema 3. Máquinas Térmicas II 1. Motores Rotativos 2. Motores de Potencia (Turbina) de Gas: Ciclo Brayton 3. Motores de Potencia (Turbina) de Vapor: Ciclo Rankine Grado de Ingeniería de la Organización

Más detalles

TEMA 12. PSICROMETRÍA

TEMA 12. PSICROMETRÍA Termodinámica Aplicada Ingeniería Química TEMA 12. PSICROMETRÍA TEMA 12: PSICROMETRÍA BLOQUE II. Análisis termodinámico de procesos industriales PROCESOS INDUSTRIALES ANÁLISIS PROCESOS CALOR TRABAJO POTENCIA

Más detalles

Tema 5 Tratamientos térmicos EUETI Escola Universitaria de Enxeñería Técnica Industrial

Tema 5 Tratamientos térmicos EUETI Escola Universitaria de Enxeñería Técnica Industrial Tratamiento de Residuos Tema 5 Tratamientos térmicos EUETI Escola Universitaria de Enxeñería Técnica Industrial INCINERACIÓN DE RESIDUOS Definición: Es el procesamiento térmico de los residuos sólidos

Más detalles

MATERIA: FÍSICA 1. PARA CONVERTIR CENTÍMETROS A PULGADAS SE DEBE MULTIPLICAR POR: 2. PARA CONVERTIR KILOGRAMOS EN LIBRAS SE DEBE MULTIPLICAR POR:

MATERIA: FÍSICA 1. PARA CONVERTIR CENTÍMETROS A PULGADAS SE DEBE MULTIPLICAR POR: 2. PARA CONVERTIR KILOGRAMOS EN LIBRAS SE DEBE MULTIPLICAR POR: MATERIA: FÍSICA 1. PARA CONVERTIR CENTÍMETROS A PULGADAS SE DEBE MULTIPLICAR POR: a. 0.3937 b. 0.5423 c. 0.2345 d. 0.1726 2. PARA CONVERTIR KILOGRAMOS EN LIBRAS SE DEBE MULTIPLICAR POR: a. 2.208 b. 2.235

Más detalles

Física II TRANSFERENCIA DE CALOR INGENIERÍA DE SONIDO

Física II TRANSFERENCIA DE CALOR INGENIERÍA DE SONIDO TRANSFERENCIA DE CALOR INGENIERÍA DE SONIDO Primer cuatrimestre 2012 Titular: Valdivia Daniel Jefe de Trabajos Prácticos: Gronoskis Alejandro Jefe de Trabajos Prácticos: Auliel María Inés TRANSFERENCIA

Más detalles

Longitud. Unidades de medida. Superficie. Unidades de medida. Volumen. Unidades de medida. Nociones sobre calor y temperatura. Escalas de temperatura.

Longitud. Unidades de medida. Superficie. Unidades de medida. Volumen. Unidades de medida. Nociones sobre calor y temperatura. Escalas de temperatura. Unidad 1: Conceptos Básicos Longitud. Unidades de medida. Superficie. Unidades de medida. Volumen. Unidades de medida Peso específico. Unidades de medida. Presión. Unidades de medida. Elementos de medición

Más detalles

Práctica No 12. Determinación experimental de la Presión de vapor de un líquido puro

Práctica No 12. Determinación experimental de la Presión de vapor de un líquido puro Práctica No 12 Determinación experimental de la Presión de vapor de un líquido puro 1. Objetivo general: Evaluar la entalpía de vaporización mediante el modelo de Clausius y Clapeyron. 2. Marco teórico:

Más detalles

tariaoperacionesunitaria OperacionesUnitariaOper acionesunitariaoperacion

tariaoperacionesunitaria OperacionesUnitariaOper acionesunitariaoperacion OperacionesUnitariaOper acionesunitariaoperacion esunitariaoperacionesuni Secado tariaoperacionesunitaria Problemas Resueltos OperacionesUnitariaOper 01/06/005 acionesunitariaoperacion Juan Sebastián Ramírez

Más detalles

Bombas y Ventiladores. Fundamentos teóricos y prácticos Cómo podemos aportar a la EE con estos equipos?

Bombas y Ventiladores. Fundamentos teóricos y prácticos Cómo podemos aportar a la EE con estos equipos? Bombas y Ventiladores Fundamentos teóricos y prácticos Cómo podemos aportar a la EE con estos equipos? Índice 1. Descripción. 2. Clasificación. 3. Curvas Características. 4. Pérdidas de Carga en Sistemas.

Más detalles

Operaciones Básicas de Transferencia de Materia Problemas Tema 6

Operaciones Básicas de Transferencia de Materia Problemas Tema 6 1º.- En una torre de relleno, se va a absorber acetona de una corriente de aire. La sección de la torre es de 0.186 m 2, la temperatura de trabajo es 293 K y la presión total es de 101.32 kpa. La corriente

Más detalles

C. Congeladores de cinta. 1. Congeladores de banda transportadora

C. Congeladores de cinta. 1. Congeladores de banda transportadora Facultad De Ciencias Aplicadas EAP de Ingeniería Agroindustrial OPERACIONES UNITARIAS II Congeladores de tunel CONGELACION DE ALIMENTOS FACILITADOR : MSc. Miguel Angel QUISPE SOLANO TARMA PERÚ C. Congeladores

Más detalles

UNIDAD Nº 2: GASES IDEALES Y CALORIMETRIA

UNIDAD Nº 2: GASES IDEALES Y CALORIMETRIA UNIDAD Nº 2: GASES IDEALES Y CALORIMETRIA UNIVERSIDAD CATÓLICA DE SALTA FAC. DE CS AGRARIAS Y VETERINARIAS AÑO 2008 Farm. Pablo F. Corregidor 1 TEMPERATURA 2 TEMPERATURA Termoreceptores: Externos (piel)

Más detalles

Equipos de deshidratación. Deshidratación. Aplicación de calor. Aplicación de calor. Clasificación de secadores

Equipos de deshidratación. Deshidratación. Aplicación de calor. Aplicación de calor. Clasificación de secadores Equipos de deshidratación Clasificación de secadores Deshidratación Procesado de alimentos 1. Según el método de transmisión de calor a los sólidos húmedos. 2. Según las características de manejo y las

Más detalles

FÍSICA 4. P = RT V a V 2. U(T,V) = U 0 +C V T a V? α α T = C 1 = C 2. v = 1.003cm 3 /g. α = 1 v

FÍSICA 4. P = RT V a V 2. U(T,V) = U 0 +C V T a V? α α T = C 1 = C 2. v = 1.003cm 3 /g. α = 1 v FÍSICA 4 SEGUNDO CUARIMESRE DE 2009 GUÍA 3: OENCIALES ERMODINÁMICOS, CAMBIOS DE FASE 1. Sean x,, z cantidades que satisfacen una relación funcional f(x,, z) = 0. Sea w una función de cualquier par de variables

Más detalles

ESTRÉS TÉRMICO POR CALOR POR FRIO

ESTRÉS TÉRMICO POR CALOR POR FRIO ESTRÉS TÉRMICO POR CALOR POR FRIO Tensión térmica Variación de la temperatura normal del cuerpo debido al calor procedente del ambiente de trabajo. Objetivo principal de la gestión del estrés térmico:

Más detalles

TMSB - Transferencia de Masa en Sistemas Biológicos

TMSB - Transferencia de Masa en Sistemas Biológicos Unidad responsable: 390 - ESAB - Escuela Superior de Agricultura de Barcelona Unidad que imparte: 748 - FIS - Departamento de Física Curso: Titulación: 2016 GRADO EN INGENIERÍA DE SISTEMAS BIOLÓGICOS (Plan

Más detalles

Facultad de Ingeniería - UBA. Técnicas Energéticas - 67.56. Gas Pobre

Facultad de Ingeniería - UBA. Técnicas Energéticas - 67.56. Gas Pobre Facultad de Ingeniería - UBA Técnicas Energéticas - 67.56 Gas Pobre Composición Producto de la gasificación de biomasa vegetal (madera, carbón, residuos agrícolas, etc) CO 2 (~ 1 % a 15 %) CO (~ 20 % a

Más detalles

EQUIPOS UTILIZADOS EN HUMIDIFICACIÓN

EQUIPOS UTILIZADOS EN HUMIDIFICACIÓN Universidad de Los Andes Facultad de Ingeniería Escuela de Ingeniería Química Dpto. de Operaciones Unitarias y Proyectos EQUIPOS UTILIZADOS EN HUMIDIFICACIÓN Prof. Yoana Castillo yoanacastillo@ula.ve CONTENIDO

Más detalles

Ensayo De Evaporadores

Ensayo De Evaporadores Ensayo De Evaporadores UNITARIAS II PROFESOR: Dr. SALMERON OCHOA IVAN ALUMNOS: ANA LAURA PACHECO MORALES 232553 OSCAR OSWALDO AGUIRRE OLVERA 232619 OSCAR SALGADO POSADA 245454 GRUPO: 7 E La Evaporación

Más detalles